Ощущения строение и функции анализаторов. Реферат: Анализаторы строение, значение, физиология

Анализаторы (органы чувств) - сложные системы чувствительных нервных образований, воспринимающие и анализирующие раздражения, действующие на животных и человека.

Каждый анализатор состоит из состоит из трех отделов:

  • периферического отдела - органа чувств или рецептора, осущест­вляющего прием и преобразование энергии воздействующих раздражи­телей в процесс нервного возбуждения (глаз, ухо, кожа и др.);
  • центрального отдела - подкорковых и корковых структур, кото­рые осуществляют переработку нервных импульсов, приходящих из пе­риферических отделов, в сенсорную информацию (ведущую роль в этом процессе играют проекционные зоны коры больших полушарий головно­го мозга).
  • связующего звена - проводящих путей, соединяющих перифериче­ский отдел анализатора с центральным:

    а) афферентных (центростремительных) нервов - восходящих нерв­ных волокон, по которым возбуждение передается от рецепторов к вы­шележащим структурам - центрам нервной системы;

    б) эфферентных (центробежных) нервов - нисходящих нервных во­локон, по которым импульсы из вышележащих центров, особенно из коры больших полушарий головного мозга, передаются к нижележа­щим уровням анализатора, регулируя их активность.

Многочисленные опыты, проведенные методами искусственной стимуля­ции, позволили установить локализацию специфических видов чувствитель­ности в коре головного мозга. Так, представительство зрительной чувстви­тельности сосредоточено главным образом в затылочных долях коры. Слухо­вая чувствительность локализуется в средней части верхней височной извили­ны, осязательно-двигательная - в задней центральной извилине и т. д.;

Анализатор составляет исходную и важнейшую часть рефлекторной ду­ги.

Рефлекторная дуга включает рецептор, проводящие пути, центральную часть анализатора и эффектор - исполнительное звено, осуществляющее ответную реакцию организма на внешнее воздействие. Между рецептором и мозгом существует не только прямая (центростремительная), но и обрат­ная (центробежная) связь. Иными словами, процессы ощущения не только начинаются в органах чувств, но и завершаются в них.

«Ощущение не есть результат только центростремительного процесса, в его основе лежит пол­ный и притом сложный рефлекторный акт, подчиняющийся в своем форми­ровании и протекании общим законам рефлекторной деятельности». Взаи­мосвязь элементов рефлекторной дуги обеспечивает основу ориентировки сложного организма в окружающем мире.

Заслуга открытия рефлекторной дуги и принципа обратной связи принад­лежит Ивану Михайловичу Сеченову. Благодаря действию данного рефлекторного механиз­ма, орган чувств является одновременно и рецептором, и эффектором.

Ощущения являются продуктом деятельности анализаторов человека. Анализатором называют взаимосвязанный комплекс нервных образований, который осуществляет прием сигналов, их трансформацию, настройку рецепторного аппарата, передачу информации к нервным центрам, ее обработку и расшифровку. И. П. Павлов считал, что анализатор состоит из трех элементов: органа чувств, проводящего пути и коркового отдела. Согласно современным представлениям в состав анализатора входит как минимум пять отделов:

  1. рецепторный;
  2. проводниковый;
  3. блок настройки;
  4. блок фильтрации;
  5. блок анализа.

Так как проводниковый отдел, по сути, представляет собой всего лишь «электрический кабель», проводящий электрические импульсы, наиболее важную роль выполняют четыре отдела анализатора (рис. 5.2). Система обратной связи позволяет вносить корректировку в работу рецепторного отдела при изменении внешних условий (например, тонкую настройку анализатора при разной силе воздействия).

Рис. 5.2.

Если в качестве примера взять зрительный анализатор человека, через который поступает большая часть информации, то эти пять отделов представлены конкретными нервными центрами (табл. 5.1).

Таблица 5.1. Структурно-функциональные характеристики составных элементов зрительного анализатора

Составные элементы (блоки) зрительного анализатора Строение Функции
Рецепторный блок Образован специальными фоторецепторными клетками (палочками и колбочками) Фоторецепторы способны вырабатывать электрические потенциалы в ответ на воздействие света на глаз человека
Проводящий блок Образован сначала зрительными нервами, а после их перекреста - зрительным трактом Проведение электрических импульсов от рецепторов к мозгу
Блок настройки Передние бугры четверохолмия среднего мозга Отвечает за формирование четкого изображения на сетчатке глаза. Четкость обеспечивается, во-первых, созданием оптимального уровня освещенности, а во-вторых, точной фокусировкой изображение на сетчатке. Первая задача осуществляется путем автоматического изменения диметра зрачкового отверстия, а вторая - путем изменения кривизны хрусталика
Блок фильтрации Таламус (латеральные коленчатые тела) Обеспечивает пропускание к коре больших полушарий только новой информации, отсеивая повторяющиеся сигналы
Блок анализа Соответствующий участок коры больших полушарий (для зрительного анализатора - затылочная доля) Обеспечивает подробный анализ изображения и формирование зрительных ощущений - то есть только в этом отделе мозга физиологические явления трансформируются в психические

Помимо зрительного анализатора, с помощью которого человек получает значительную долю информации об окружающем мире, для составления целостной картины мира важны и иные анализаторы, воспринимающие химические, механические, температурные и иные изменения внешней и внутренней среды (рис. 5.3).

Анализаторы человека – это функциональные нервные образования, обеспечивающие приём и последующую переработку информации, полученную из внутренней среды и наружного мира. Анализаторы человека, образующие единство со специализированными структурами – органами чувств, способствующими в получении информации, называют сенсорной системой.

Сенсорные анализаторы человека связывают индивида со средой с помощью проводящих нервных путей, рецепторов и расположенного в коре головного мозга мозгового конца. Выделяют внешние и внутренние анализаторы человека. К внешним относят зрительный, тактильный, обонятельный, слуховой, вкусовой анализатор. Внутренние анализаторы человека отвечают за состояние и положение внутренних органов.

Виды анализаторов человека

Сенсорные анализаторы человека подразделяются на виды в зависимости от чувствительности рецепторов, природы раздражителя, характера ощущений, скорости адаптации, назначения и так далее.

Внешние анализаторы человека получают данные от мира и в дальнейшем их анализируют. Они воспринимаются человеком субъективно под видом ощущений.

Выделяют такие виды внешних анализаторов человека: зрительный, обонятельный, слуховой, вкусовой, осязательный и температурный.

Внутренние анализаторы человека воспринимают и подвергают анализу видоизменения во внутренней среде, показателях гомеостазиса. Если показатели организма в норме, то они не воспринимаются человеком. Только отдельные изменения организма способны вызвать у человека ощущения, как например, жажду, голод, которые основываются на биологических потребностях. Для их удовлетворения и возобновления стабильности организма включаются определенные поведенческие реакции. Импульсы участвуют в регуляции функционирования внутренних органов, они обеспечивают приспособление организма к его разнообразной жизнедеятельности.

Анализаторы, отвечающие за положение тела, подвергают анализу данные о нахождении и положении тела. К анализаторам, отвечающим за положение тела, относят вестибулярный аппарат и двигательный (кинестетический).

Болевой анализатор человека представляет особенную важность для организма. Болевые сигналы организма доставляют человеку сигналы о том, что возникают повреждающие действия.

Характеристика анализаторов человека

Основой в характеристике анализатора является его чувствительность, которая характеризует порог ощущения человека. Выделяют два вида порогов ощущения – это абсолютный и дифференциальный.

Абсолютный порог ощущения характеризует минимальную силу раздражения, которая вызывает определенную реакцию.

Дифференциальный порог ощущения описывает между двумя величинами раздражителя минимальное различие, едва дающее заметное различие ощущений.

Величина ощущений меняется гораздо медленнее, чем сила раздражителя.

Существует еще понятие латентного периода, которое описывает время от начала воздействия до возникновения ощущений.

Зрительный анализатор человека помогает человеку принимать до 90% данных об окружающем мире. Воспринимающим органом является глаз, который имеет очень высокую чувствительность. Изменения зрачка в размерах позволяют человеку менять чувствительность многократно. Сетчатка глаза обладает очень высокой восприимчивостью от 380 до 760 нанометров (миллиардных долей метра).

Бывают ситуации, при которых приходится учитывать время, необходимое для адаптации глаз в пространстве. Световая адаптация – это привыкание анализатора к сильной освещенности. В среднем адаптация занимает от двух минут до десяти, в зависимости от яркости света.

Темновая адаптация – это адаптация зрительного анализатора к плохой освещенности, в некоторых случаях она происходит по истечении некоторого времени. Во время такой зрительной адаптации человек становится уязвимым и пребывает в состоянии опасности. Поэтому в таких ситуациях необходимо быть очень внимательными.

Зрительный анализатор человека характеризуется остротой – наименьшим углом, под которым можно воспринять две точки, как раздельные. На остроту влияет контрастность, освещенность и другие факторы.

Ощущение, возбуждающееся световым сигналом, сберегается в течение 0, 3 секунд за счет инерции. Инерция зрительного анализатора формирует стробоскопический эффект, который выражается в ощущениях непрерывности движений, когда частота смены изображений составляет десять раз в секунду. Это создает оптические иллюзии.

Зрительный анализатор человека состоит из светочувствительных образований – палочек и колбочек. С помощью палочек человек способен видеть ночь, темноту, но такое зрение бесцветное. В свою очередь колбочки обеспечивают цветное изображение.

Каждый человек должен понимать всю серьезность в отклонениях в восприятии цвета, поскольку они могут привести к неблагоприятным последствиям. Среди таких отклонений чаще всего встречаются: дальтонизм, цветовая слепота, гемералопия. Дальтоники не различают зеленый и красный цвета, иногда фиолетовый и желтый, которые им кажутся серыми. Человек, у которого цветовая слепота, видит все цвета серыми. У индивида страдающего гемералопией отсутствует способность к видению при сумрачном освещении.

Тактильный анализатор человека обеспечивает ему защитно-оборонительную функцию. Воспринимающим органом является кожа, она обороняет организм от попадания на нее химических веществ, служит защитным барьером в ситуации прикосновения кожи тела с электрическим током, является регулятором температуры тела, оберегает человека от переохлаждения или перегрева.

Если у человека нарушается от 30 до 50 процентов кожного покрова и не предоставляется медицинская помощь, то он в скором времени погибает.

Кожа человека состоит из 500 тысяч точек, воспринимающих ощущения действия на кожную поверхность механических стимулов, боли, тепла, холода.

Особенность тактильного анализатора заключается в его высокой приспособляемости к пространственной локализации. Это выражается в исчезновении чувства прикосновения. кожного покрова зависит от интенсивности раздражителя, она может происходить на протяжении от двух до двадцати секунд.

Анализатор ощущения температурной чувствительности свойствен организмам, имеющим постоянную температуру тела. На человеческой коже размещаются два вида температурных анализаторов: анализаторы, реагирующие на холод и реагирующие – на тепло. Кожа человека состоит из 30 тысяч точек тепла и 250 точек, воспринимающих холод. При восприятии тепла и холода существуют различные пороги чувствительности, тепловые точки реагируют на изменения температуры в 0,2°С; точки, воспринимающие холод на 0,4°С. Температура начинает ощущаться уже за одну секунду ее воздействия на тело. С помощью анализаторов температурной чувствительности сохраняется неизменная температура тела.

Анализатор обоняния человека представлен органом ощущения – носом. Существует приблизительно 60 миллионов клеток, которые размещаются в слизистой оболочке носа. Эти клетки покрыты волосками, длиной 3-4 нанометра, они являются защитным барьером. Нервные волокна, уходящие от обонятельных клеток, отсылают сигналы о воспринятых запахах в центры мозга. Если человек ощущает запах вещества, опасного для его здоровья (нашатырный спирт, эфир, хлороформ и другие), он рефлекторно замедляет или задерживает дыхание.

Анализатор восприятия вкуса представлен специальными клетками, находящимися на слизистой оболочке языка. Ощущения вкуса могут быть: сладким, кислым, солёным и горьким, также их комбинации.

Ощущения вкуса играют защитную роль в предупреждении попадания опасного для здоровья или жизни вещества в организм. Индивидуальные восприятия вкуса могут варьироваться до 20%. Чтобы обезопасить себя от попадания вредных веществ в организм необходимо: попробовать незнакомую пищу, как можно дольше продержать ее во рту, очень медленно прожёвывать, прислушиваться к собственным ощущениям и вкусовым реакциям. После этого решать: глотать еду или нет.

Ощущение человеком мышц происходит за счет специальных рецепторов, они называются проприорецепторами. Они передают сигналы в центры мозга, сообщая о состоянии мышц. В ответ на эти сигналы, мозг направляет импульсы, которые координируют работу мышц. Учитывая влияние гравитации, мышечное чувство «работает» стабильно. Поэтому человек способен принимать удобную для себя позу, которая имеет большое значение в работоспособности.

Болевая чувствительность человека имеет защитную функцию, она предупреждает об опасности. После поступления сигнала о боли начинают действовать оборонительные рефлексы, как например, удаление организма от раздражителя. При ощущении боли перестраивается деятельность всех систем организма.

Боль воспринимается всеми анализаторами. Когда превышается порог допустимой нормы чувствительности, возникает ощущение боли. Имеются также специальные рецепторы – болевые. Боль может нести опасность, болевой шок осложняет деятельность организма и функцию самовосстановления.

Функции слухового анализатора человека заключаются в возможности воспринимать мир, который наполнен звуками во всей его полноте. Некоторые звуки являются сигналами и предупреждают человека об опасности.

Звуковую волну характеризует интенсивность и частота. Человек их воспринимает, как громкость звука. Слуховой анализатор человека представлен внешним органом – ухом. Ухо является сверхчувствительным органом, оно может улавливать изменения давления, которые поступают от поверхности земли. Строение уха разделяется на наружное, среднее и внутреннее. Оно воспринимает звуки и сохраняет равновесие тела. С помощью ушной раковины улавливаются и определяются звуки, их направление. Барабанная перепонка под воздействием звукового давления колышется. Сразу за перепонкой имеется среднее ухо, еще дальше внутреннее ухо, в котором находится специфическая жидкость, и два органа — вестибулярный аппарат и орган слуха.

В органе слуха находится примерно 23 тысячи клеток, являющихся анализаторами, в которых звуковые волны переходят в нервные импульсы, устремляющиеся в мозг человека. Ухо человека способно воспринимать от 16 герц (Гц) до 2 кГц. Звуковая интенсивность измеряется в белах и децибелах.

Человеческое ухо владеет важной и специфической функцией – бинауральным эффектом. Благодаря бинауральному эффекту человек может определить, с какой стороны к нему поступает звук. Звук, направляется в ушную раковину, которая обращена к его источнику. У человека с одним глухим ухом бинауральный эффект бездействует.

Вибрационная чувствительность также является не менее важной, чем различные сенсорные анализаторы человека. Влияние вибраций может быть очень вредным. Они являются локальными раздражителями и наносят повреждающее воздействие на ткани и находящиеся в них рецепторы. Рецепторы имеют связь с ЦНС, их воздействие оказывает влияние на все системы организма.

Если частота механических колебаний низкая (до десяти герц), тогда вибрации распространяются по всему организму независимо от места нахождения источника. Если такое низкочастотное воздействие происходит очень часто, тогда под негативным влиянием находятся мышцы человека, которые быстро поражаются. Когда на организм воздействуют высокочастотные вибрации, то ограничивается зона их распространения в месте контакта. Это вызывает изменения в кровеносных сосудах, и часто может вызвать нарушения функционирования сосудистой системы.

Вибрации оказывают действие на сенсорную систему. Вибрации общего действия, ухудшают зрение и его остроту, ослабевают светочувствительность глаз и ухудшают функционирование вестибулярного аппарата.

Локальные вибрации снижают тактильную, болевую, температурную и проприоцептивную чувствительность человека. Такие разносторонние негативные воздействия на организм человека приводят к серьезным и тяжелым изменениям в деятельности организма и способно вызвать заболевание под названием виброболезнь.

В целом анализаторы представляют собой совокупность взаимодействующих образований периферической и центральной нервной системы, которые осуществляют восприятие и анализ информации о явлениях, происходящих как в окружающей среде, так и внутри самого организма. Все анализаторы в структурном отношении принципиально однотипны. Они имеют на своей периферии воспринимающие аппараты - рецепторы, в которых и происходит превращение энергии раздражителя в процесс возбуждения. От рецепторов по сенсорным (чувствительным) нейронам и синапсам (контактам между нервными клетками) поступают в центральную нервную систему (рис. 1).

Различают следующие основные виды рецепторов. Механорецепторы, которые воспринимают механическую энергию. К ним относятся рецепторы: слуховой, вестибулярной, двигательной, тактильной, частично висцеральной чувствительности. И хеморецепторы - обоняние, вкус. Терморецепторы, которые имеют кожаный анализатор. Фоторецепторы - зрительный анализатор, и другие виды. Каждый рецептор выделяет из множества раздражителей внешней и внутренней среды свой адекватный раздражитель. Этим и объясняется очень высокая чувствительность рецепторов.

3. Свойства анализаторов

Все анализаторы, благодаря своему однотипному строению, имеют общие психофизиологические свойства:

1. Чрезвычайно высокую чувствительность к адекватным раздражителям. Эта чувствительность близка к теоретическому пределу и в современной технике пока что не достигнута. Количественной мерой чувствительности является предельная интенсивность, то есть наименьшая интенсивность раздражителя, воздействие которой дает ощущение.

2. Абсолютный, дифференциальный и оперативный пределы чувствительности к раздражителю. Абсолютный предел имеет верхний и нижний уровни. Нижний абсолютный предел чувствительности - это минимальный размер раздражителя, который вызывает чувствительность. Верхний абсолютный предел - максимально допустимая величина раздражителя, который не вызывает у человека боль.

Дифференциальная чувствительность определяется наименьшим размером, на котором стоит изменить силу раздражителя, чтобы вызывать минимальное изменение ощущения. Это положение впервые было введено немецким физиологом Э. Вебером и количественно описано немецким физиком Г. Фехнером.

Каждое ощущение, кроме качества, непременно имеет определенную меру интенсивности, или силы. Представляется интересным выяснить, какое взаимоотношение между интенсивностью ощущения и интенсивностью раздражения. Возможно, что интенсивность ощущения или абсолютно не связанная с интенсивностью раздражения, или, напротив, она является прямым отражением этого последнего, или же, наконец, между ними есть специфическая взаимосвязь, которая подчиняется определенной закономерности.

Решить этот вопрос невозможно ни путем простого наблюдения, ни на основе того или другого теоретического рассуждения. В этом случае дать что-либо значимое может только эксперимент. Поэтому неудивительно, что первый шаг, сделанный на пути научного решения этого вопроса, носил экспериментальный характер; в то же время, это был тот первый психологический вопрос, решить которое попробовали путем эксперимента.

История экспериментальной психологии начинается с того времени, когда физиолог Э. Вебер поставил вопрос о соотношении между ощущением и раздражением, то есть между психическим и физическим, с точки зрения их интенсивности. В последующем опыты Э. Вебера продолжил физик Г. Фехнер, окончательно заложив тем самым основы той части психологии, которая известна под названием психофизики и которая в течение нескольких десятилетий считалась наиболее интересной и более важной отраслью психологии.

Так, что же выяснилось о взаимосвязи между ощущением и раздражением с точки зрения их интенсивности?

Во-первых, окончательно подтвердились наблюдения, которые свидетельствуют о том, что человек чувствует вовсе не любое изменение раздражения, а чувствует лишь раздражение относительно большой интенсивности. Во-вторых, в результате точных исследований был найденный закон, который лежит в основе соотношения между интенсивностями раздражения и ощущения.

Для понимания данного закона особенно важным является понятие так называемого порога, установленное в процессе психофизических исследований.

Выяснилось, что интенсивность раздражения должна достичь определенного уровня с тем, чтобы мы хоть как-то почувствовали его действие. Уровень раздражения, которое дает такое едва заметное ощущение, называется нижним порогом ощущения. Однако существуют и такой уровень интенсивности раздражения, после увеличения которого, интенсивность ощущения уже не усиливается. Этот уровень называется верхним порогом ощущения. Действие раздражения мы чувствуем только в интервале между этими порогами, поэтому их принято называть внешними порогами ощущения .

Примечательно, что полного параллелизма между интенсивностями ощущения и раздражения не существует и в межпороговом интервале интенсивностей. Например, беря в руки книгу, мы, понятно, чувствуем ее вес. Следовательно, в данном случае интенсивность ее веса находится в промежутке между нижним и верхним порогами. А теперь заложим в книгу лист бумаги; физически вес книги увеличился, то есть уровень интенсивности раздражения повысился. Однако, взяв книгу в руки, мы это изменение веса не почувствуем. Увеличение веса должно достичь определенного уровня, чтобы мы могли это как-то заметить. Величина прироста раздражения, необходимого для получения этого едва заметного отличия между ощущениями, называется порогом различения .

Раздражение, которое превышает эту величину по интенсивности, называется запороговым, а раздражение с меньшей интенсивностью - допороговым. Уровень порога различения (высокий или низкий) зависит от чувствительности к различению: чем выше чувствительность к различению, тем ниже порог различения.

Э. Вебер первым обратил внимание (1834) на то, что порог различения бывает двояким - абсолютным и релятивным и что очень важно отличать их один от другого. Абсолютным порогом различения называется прирост интенсивности раздражения, необходимый для достижения порога различения. Например, если для того, чтобы почувствовать едва заметное изменение 2000-грамового веса, к нему необходимо прибавить 200 граммов, и тогда эта величина является абсолютным порогом ощущения. Показатель абсолютного порога не является постоянной величиной и зависит от веса основного раздражителя. Например, если к основному раздражителю весом в 2000 граммов следует добавить 200 грамм, то в случае раздражителя весом 4000 граммов 200 граммов уже недостаточно - к нему надо добавить больше.

Если эту же величину (в нашем примере - 200 граммов) выразить не в твердых физических единицах измерения (граммах), а числом, которое выражает отношение между дополнительным раздражением и основным раздражением, то получим релятивный порог различения . В нашем примере вес основного раздражителя составлял 2000 граммов, а дополнительного - 200 граммов; отношение между ними составляет

Следовательно, релятивный порог равняется 0,1. Когда Э. Вебер вычислил релятивный порог различения для разных случаев основного раздражения, выяснилось, что этот порог является константной величиной. В области модальности веса он равняется 0,1. Это значит, что для того, чтобы почувствовать едва заметное изменение веса, его надо увеличить или уменьшить на одну десятую часть.

Именно в этом заключается известный основной психофизический закон Э. Вебера, который сыграл такую значительную роль в истории психологии.

Основной психофизический закон физиологии Вебера-Фехнера: интенсивность ощущений пропорциональна логарифму интенсивности раздражений. В математической форме закон Вебера - Фехнера выражается так:

где p - интенсивность (или сила) ощущения;

S - значение интенсивности действующего раздражителя;

S 0 - нижнее предельное значение интенсивности действующего раздражителя: если 𝑆<𝑆 0 , раздражитель вовсе не ощущается;

K - константа, зависящая от субъекта ощущения.

Графически закон Вебера-Фехнера отображается в виде графика функции y = log 2 x (рис. 2).

Рис. 2. Графическое отображение закона Вебера-Фехнера

3. Возможность к адаптации, то есть возможность приспосабливать уровень своей чувствительности к раздражителям . При высокой интенсивности раздражителей чувствительность снижается и, напротив, при низких - повышается. Это достаточно часто мы встречаем в повседневной жизни, и это не нуждается в комментариях.

4. Возможность тренироваться . Данное свойство выражается как в повышении чувствительности, так и ускорении адаптации (например, часто говорят о музыкальном слухе, чувствительные органы дегустаторов и т. д.).

5. Возможность определенное время сохранять ощущение после прекращения действия раздражителя . Например, человек может возобновить в своем сознании на короткое мгновение увиденную характеристику или услышанные звуковые интонации. Такая "инерция" ощущений определяется как следствие. Длительность последовательного образа значительно зависит от интенсивности раздражителя и в некоторых случаях даже ограничивает возможность анализатора.

6. Постоянное взаимодействие друг с другом . Известно, что окружающий нас мир многогранен, и только благодаря взаимодействию анализаторов осуществляется полное восприятие человеком объектов и явлений внешней среды.

В повседневной жизни мы постоянно сталкиваемся с проявлением закона Вебера-Фехнера. Например, тень от свечи незаметна при свете солнца, при сильном шуме мы не слышим тихих звуков и тому подобное. Такая реакция человеческого организма обусловлена процессом тысячелетнего отбора, в ходе которого наше сознание воспроизвело мощную систему самосохранения и самозащиты организма. Если бы организм человека фиксировал все без исключения внешние раздражители, то была бы потеряна защитная реакция всей нервной системы. Именно поэтому внешние раздражители фиксируются не по их абсолютной величине, а только по относительной.

Существует порог, запрещенная граница внешнего влияния на организм человека, в пределах которого происходят ее физическая и психическая деградация вплоть до полного разрушения генофонда. Такие явления наблюдаются в зонах стихийного бедствия.

Анализатор - это система, обеспечивающая восприятие, доставку в мозг и анализ в нем какого-либо вида (зрительной, слуховой, обонятельной и т. д.). Каждый анализатор органов чувств состоит из периферического отдела (рецепторов), проводникового отдела (нервных путей) и центрального отдела (центров, анализирующих данный вид информации).

Зрительный анализатор

Более 90% информации об окружающем мире человек получает с помощью зрения.

Орган зрения глаз состоит из глазного яблока и вспомогательного аппарата. К последнему относят веки, ресницы, мышцы глазного яблока и слёзные железы. Веки - складки кожи, выстланные изнутри слизистой оболочкой. Слезы, образующиеся в слёзных железах, омывают передний отдел глазного яблока и через носослёзный канал проходят в ротовую полость. У взрослого человека в сутки должно вырабатываться не менее 3-5 мл слез, выполняющих бактерицидную и увлажняющую роль.

Глазное яблоко имеет шарообразную форму и располагается в глазнице. При помощи гладких мышц оно может поворачиваться в глазнице. Глазное яблоко имеет три оболочки. Наружная - фиброзная, или белочная - оболочка спереди глазного яблока переходит в прозрачную роговицу, а ее задний отдел называется склерой. Через среднюю оболочку - сосудистую - глазное яблоко снабжается кровью. Впереди в сосудистой оболочке имеется отверстие - зрачок, позволяющий лучам света попадать внутрь глазного яблока. Вокруг зрачка часть сосудистой оболочки окрашена и называется радужкой. Клетки радужки содержат всего один пигмент, и если его мало, радужка окрашена в голубой или серый цвет, а если много - в карий или черный. Мышцы зрачка расширяют или сужают его в зависимости от яркости света, освещающего глаз, приблизительно от 2 до 8 мм в диаметре. Между роговицей и радужкой расположена передняя камера глаза, заполненная жидкостью.

Позади радужки расположен прозрачный хрусталик - двояковыпуклая линза, необходимая для фокусировки лучей света на внутреннюю поверхность глазного яблока. Хрусталик снабжен специальными мышцами, меняющими его кривизну. Этот процесс называется аккомодацией. Между радужкой и хрусталиком расположена задняя камера глаза.

Большая часть глазного яблока заполнена прозрачным стекловидным телом. Пройдя через хрусталик и стекловидное тело, лучи света попадают на внутреннюю оболочку глазного яблока - сетчатку. Это многослойное образование, причем три его слоя, обращенные внутрь глазного яблока, содержат зрительные рецепторы - колбочки (около 7 млн.) и палочки (около 130 млн.). В палочках содержится зрительный пигмент родопсин, они более чувствительны, чем колбочки, и обеспечивают черно-белое зрение при плохом освещении. Колбочки содержат зрительный пигмент иодопсин и обеспечивают цветное зрение в условиях хорошей освещенности. Считается, что есть три вида колбочек, воспринимающих красный, зеленый и фиолетовый цвета соответственно. Все остальные оттенки определяются комбинацией возбуждений в этих трех типах рецепторов. Под действием квантов света зрительные пигменты разрушаются, генерируя электрические сигналы, которые передаются от палочек и колбочек к ганглиозному слою сетчатки. Отростки клеток этого слоя образуют зрительный нерв, выходящий из глазного яблока через слепое пятно - место, где нет зрительных рецепторов.

Больше всего колбочек располагается прямо напротив зрачка - в так называемом желтом пятне, а в периферических отделах сетчатки колбочек почти нет, там располагаются одни палочки.

Выйдя из глазного яблока, зрительный нерв следует в верхние бугры четверохолмия среднего мозга, где зрительная информация подвергается первичной обработке. По аксонам нейронов верхних бугров зрительная информация попадает в латеральные коленчатые тела таламуса, а уж оттуда - в затылочные доли коры больших полушарий. Именно там формируется тот зрительный образ, который мы субъективно ощущаем.

Следует отметить, что оптическая система глаза формирует на сетчатке не только уменьшенное, но и перевернутое изображение предмета. Обработка сигналов в центральной нервной системе происходит таким образом, что предметы воспринимаются в естественном положении.

Зрительный анализатор человека обладает потрясающей чувствительностью. Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. В идеальных условиях (чистота воздуха, безветрие) огонь зажженной на горе спички может быть различим на расстоянии 80 км. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 сек для распознавания объекта, который попал в поле зрения.

Слуховой анализатор

Слух необходим для восприятия звуковых колебаний в довольно широком диапазоне частот. В юношеском возрасте человек различает в диапазоне от 16 до 20 000 герц, однако уже к 35 годам верхняя граница слышимых частот падает до 15 000 герц. Помимо создания объективной целостной картины об окружающем мире слух обеспечивает речевое общение людей.

Слуховой анализатор включает в себя орган слуха, слуховой нерв и центры мозга, анализирующие слуховую информацию. Периферическая часть органа слуха, то есть орган слуха, состоит из наружного, среднего и внутреннего уха.

Наружное ухо человека представлено ушной раковиной, наружным слуховым проходом и барабанной перепонкой.

Ушная раковина - хрящевое образование, покрытое кожей. У человека, в отличие от многих животных, ушные раковины практически неподвижны. Наружный слуховой проход - канал длиной 3-3,5 см, заканчивающийся барабанной перепонкой, отделяющей наружное ухо от полости среднего уха. В последней, имеющей объем около 1 см 3 , расположены самые маленькие кости организма человека: молоточек, наковальня и стремечко. Молоточек «рукояткой» срастается с барабанной перепонкой, а «головкой» подвижно присоединен к наковальне, которая другой своей частью подвижно соединена со стремечком. Стремечко, в свою очередь, широким основанием сращено с перепонкой овального окна, ведущего во внутреннее ухо. Полость среднего уха через евстахиеву трубу соединена с носоглоткой. Это необходимо для выравнивания по обе стороны барабанной перепонки при изменениях атмосферного давления.

Внутреннее ухо находится в полости пирамиды височной кости. К органу слуха во внутреннем ухе относится улитка - костный, спирально закрученный канал в 2,75 оборота. Снаружи улитка омывается перилимфой, заполняющей полость внутреннего уха. В канале улитки расположен перепончатый костный лабиринт, заполненный эндолимфой; в этом лабиринте находится звуковоспринимающий аппарат - спиральный орган, состоящий из основной мембраны с рецепторными клетками и покровной мембраны. Основная мембрана - тонкая перепончатая перегородка, разделяющая полость улитки и состоящая из многочисленных волокон различной длины. В этой мембране расположено около 25 тыс. рецепторных волосковых клеток. Один конец каждой рецепторной клетки фиксирован на волокне основной мембраны. Именно от этого конца отходит волокно слухового нерва. При поступлении звукового сигнала столбик воздуха, заполняющий наружный слуховой проход, колеблется. Эти колебания улавливаются барабанной перепонкой и через молоточек, наковальню и стремечко передаются на овальное окошко. При прохождении через систему звуковых косточек звуковые колебания усиливаются приблизительно в 40-50 раз и передаются на перилимфу и эндолимфу внутреннего уха. Через эти жидкости колебания воспринимаются волокнами основной мембраны, причем высокие звуки вызывают колебания более коротких волокон, а низкие - более длинных. В результате колебаний волокон основной мембраны возбуждаются рецепторные волосковые клетки, и сигнал по волокнам слухового нерва передается сначала в ядра нижних бугров четверохолмия, оттуда в медиальные коленчатые тела таламуса и, наконец, в височные доли коры больших полушарий, где и находится высший центр слуховой чувствительности.

Вестибулярный анализатор выполняет функцию регуляции положения тела и его отдельных частей в пространстве.

Периферическая часть этого анализатора представлена рецепторами, расположенными во внутреннем ухе, а также большим количеством рецепторов, расположенных в сухожилиях мышц.

В преддверии внутреннего уха расположены два мешочка - круглый и овальный, которые заполнены эндолимфой. В стенках мешочков находится большое число рецепторных волосковидных клеток. В полости мешочков расположены отолиты - кристаллы солей кальция.

Кроме того, в полости внутреннего уха присутствуют три полукружных канала, расположенных во взаимно перпендикулярных плоскостях. Они заполнены эндолимфой, в стенках их расширений находятся рецепторы.

При изменении положения головы или всего тела в пространстве отолиты и эндолимфа полукружных канальцев перемещаются, возбуждая волосковидные клетки. Их отростки образуют вестибулярный нерв, по которому информация об изменении положения тела в пространстве попадает в ядра среднего мозга, мозжечок, ядра таламуса и, наконец, в теменную область коры больших полушарий.

Тактильный анализатор

Осязание - это комплекс ощущений, возникающий при раздражении нескольких видов рецепторов кожи. Рецепторы прикосновения (тактильные) бывают нескольких видов: одни из них очень чувствительны и возбуждаются при вдавлении кожи на руке всего на 0, 1 мкм, другие возбуждаются лишь при значительном давлении. В среднем на 1 см 2 приходится около 25 тактильных рецепторов, однако на коже лица, пальцев, на языке их гораздо больше. Кроме того, к прикосновениям чувствительны волоски, покрывающие 95% нашего тела. У основания каждого волоска находится тактильный рецептор. Информация от всех этих рецепторов собирается в спинной мозг и по проводящим путям белого вещества поступает в ядра таламуса, а оттуда в высший центр тактильной чувствительности - область задней центральной извилины коры больших полушарий.

Вкусовой анализатор

Периферический отдел вкусового анализатора - вкусовые рецепторы, расположенные в эпителии языка и, в меньшей степени, слизистой ротовой полости и глотки. Вкусовые рецепторы реагируют только на растворенные в вещества, а нерастворимые вещества вкуса не имеют. Человек различает четыре вида вкусовых ощущений: соленое, кислое, горькое, сладкое. Больше всего рецепторов, восприимчивых к кислому и соленому, расположено по бокам языка, к сладкому - на кончике языка, а к горькому - на корне языка, хотя небольшое число рецепторов любого из этих раздражителей разбросано по слизистой всей поверхности языка. Оптимальная величина вкусовых ощущений наблюдается при в полости рта 29°С.

От рецепторов информация о вкусовых раздражителях по волокнам языкоглоточного и частично лицевого и блуждающего нерва поступает в средний мозг, ядра таламуса и, наконец, на внутреннюю поверхность височных долей коры больших полушарий, где расположены высшие центры вкусового анализатора.

Обонятельный анализатор

Обоняние обеспечивает восприятие различных запахов. Обонятельные рецепторы расположены в слизистой оболочке верхней части носовой полости. Общая площадь, занимаемая обонятельными рецепторами, составляет у человека 3-5 см 2 . Для сравнения: у собаки эта площадь составляет около 65 см 2 , а у акулы - 130 см 2 . Чувствительность обонятельных пузырьков, которыми заканчиваются рецепторные обонятельные клетки у человека, тоже не очень велика: для возбуждения одного рецептора необходимо, чтобы на него подействовало 8 молекул пахучего вещества, а ощущение запаха возникает в нашем мозге только при возбуждении приблизительно 40 рецепторов. Таким образом, человек субъективно начинает ощущать запах только в том случае, когда в нос попадает более 300 молекул пахучего вещества. Информация от обонятельных рецепторов по волокнам обонятельного нерва поступает в обонятельную зону коры больших полушарий, расположенную на внутренней поверхности височных долей.