Самодельный милливольтметр переменного тока. Вольтметр на операционном усилителе

Понадобился точный милливольтметр переменного тока, отвлекаться на поиски подходящей схемы и подбирать детали уж очень не хотелось, и тогда взял и купил готовый набор «Милливольтметр переменного тока». Когда вник в инструкцию выяснилось, что у меня на руках только половина того что нужно. Оставил эту затею и купил на базаре древний, но в почти отличном состоянии осциллограф ЛО-70 и прекрасно всё сделал. А так как за последующее время изрядно надоело перекладывать этот пакетик с конструктором с места на место, решил всё же его собрать. Также присутствует любопытство по поводу того насколько хорош он будет.

В набор входит микросхема К544УД1Б которая представляет собой операционный дифференциальный усилитель с высоким входным сопротивлением и низким уровнем входных токов, с внутренней частотной коррекцией. Плюс печатная плата с двумя конденсаторами, с двумя парами резисторов и диодов. Также имеется инструкция по сборке. Всё скромно, но обид нет, стоит набор меньше чем одна микросхема из него в розничной продаже.

Милливольтметр, собранный по данной схеме позволяет измерять напряжение с пределами:

  • 1 - до 100 мВ
  • 2 - до 1 В
  • 3 - до 5 В

В диапазоне 20 Гц - 100 кГц, входное сопротивление около 1 МОм, напряжение питания
от + 6 до 15 В.

Печатная плата милливольтметра переменного тока изображена со стороны печатных дорожек, для «отрисовки» в Sprint-Layout («зеркалить» не нужно), если понадобиться.

Сборка началась с изменений в компонентном составе: под микросхему поставил панельку (сохранней будет), керамический конденсатор поменял на плёночный, номинал естественно прежний. Один из диодов Д9Б при монтаже пришёл в негодность - запаял все Д9И, благо в инструкции последняя буква диода вообще не прописана. Номиналы всех устанавливаемых на плату компонентов были измерены, они соответствуют указанным в схеме (у электролита ).

В набор были включены три резистора номиналом R2 - 910 Ом, R3 - 9,1 кОм и R4 - 47 кОм однако при этом в руководстве по сборке есть оговорка что их номиналы необходимо подбирать в процессе настройки, так что сразу поставил подстроечные резисторы на 3,3 кОм, 22 кОм и 100 кОм. Их было нужно смонтировать на любой подходящий переключатель, взял имевшийся в наличии марки ПД17-1. Показался весьма удобным, миниатюрен, есть за что крепить на плате, имеет три фиксированных положения переключения.

В итоге все узлы из электронных компонентов поместил на монтажную плату , соединил их между собой и подсоединил к маломощному источнику переменного тока - трансформатору ТП-8-3, который подаст на схему напряжение 8,5 вольт.

А теперь заключительная операция - калибровка. В качестве генератора звуковой частоты использован виртуальный. Звуковая карта компьютера (даже самая посредственная) вполне прилично справляется с работой на частотах до 5 кГц. На вход милливольтметра подан от генератора звуковой частоты сигнал частотой 1000 Гц, действующее значение которого соответствует предельному напряжению выбранного поддиапазона.

Звук берётся с разъёма «наушники» (зелёного цвета). Если после подсоединения к схеме и включения виртуального звукового генератора звук «не пойдёт» и даже подключив наушники его, не будет слышно, то в меню «пуск» наведите курсор на «настройки» и выберите «панель управления», где выберите «диспетчер звуковых эффектов» и в нём нажмите на «Выход S/PDIF», где будет указано несколько вариантов. Наш тот, где есть слова «аналоговый выход». И звук «пойдёт».

Был выбран поддиапазон «до 100 мВ» и при помощи подстроечного резистора достигнуто отклонение стрелки на конечное деление шкалы микроамперметра (внимание на символ частоты, на шкале, обращать не нужно). То же самое было успешно проделано с другими поддиапазонами. Инструкция производителя в архиве. Несмотря на свою простоту, радиоконструктор оказался вполне работоспособным, и что особенно понравилось - адекватным в настройке. Одним словом набор хорош. Поместить всё в подходящий корпус (если нужно), установить разъёмы и прочее будет делом техники.

Обсудить статью МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА

Высокая точность измерений величины ВЧ-напряжений (до третьего-четвертого знака) в радиолюбительской практике, собственно, и не нужна. Больше важна качественная составляющая (наличие сигнала достаточно высокого уровня - чем больше, тем лучше). Обычно, при измерении ВЧ-сигнала на выходе гетеродина (генератора), такая величина не превышает 1,5 – 2 вольт, а сам контур в резонанс настраивают по максимальной величине ВЧ напряжения. При настройках в трактах ПЧ сигнал покаскадно повышающаяся от единиц до сотни милливольт.

Для таких измерений до сих пор часто предлагаются ламповые вольтметры (типа ВК 7-9, В 7-15 и др.) с диапазонами измерений 1 -3в. Высокое входное сопротивление и малая входная емкость в таких приборах является определяющим фактором, а погрешность составляет до 5-10% и определяется точностью применяемой стрелочной измерительной головки. Измерения таких же параметров можно проводить с помощью самодельных стрелочных приборов, схемы которых выполнены на полевых транзисторах. Например, в ВЧ милливольтметре Б.Степанова (2) входная емкость составляет всего 3 пФ, сопротивление на различных поддиапазонах (от 3 мВ до 1000 мВ) даже в худшем случае не превышает 100 кОм при погрешности +/- 10% (определяется применяемой головкой и погрешностью КИП для градуировки). При этом измеряемое ВЧ напряжение с верхней границей частотного диапазона 30 мГц без явной частотной погрешности, что вполне приемлемо в радиолюбительской практике.

Т.к. современные цифровые приборы для большинства радиолюбителей все еще дороги, в прошлом году в журнале «Радио» Б.Степанов (3) предложил применять ВЧ-пробник для дешевого цифрового мультиметра типа М-832 с подробным описанием его схемы и методики применения. Между тем, не затрачивая вообще средств, с успехом можно применять стрелочные ВЧ-милливольтметры, при этом освобождая основной цифровой мультиметр для параллельно проводимых измерений тока или сопротивления в разрабатываемой схеме…

По схемотехнике предлагаемый прибор очень прост, а минимум применяемых комплектующих найдутся «в ящике» практически каждого радиолюбителя. Собственно, в схеме ничего нового нет. Применение ОУ для таких целей подробно описано в радиолюбительской литературе 80-90 годов (1, 4). Использована широкораспространенная микросхема К544УД2А (или УД2Б, УД1А, Б) с полевыми транзисторами на входе (а значит и с высоким входным сопротивлением). Можно применять любые операционные усилители других серий с полевиками на входе и в типичном включении, например, К140УД8А. Технические характеристики милливольтметра-вольтметра соответствуют приведенным выше, поскольку основой прибора стала схема Б.Степанова (2).

В режиме вольтметра коэффициент усиления ОУ равен 1 (100% ООС) и напряжение измеряется микроамперметром до 100 мкА с добавочными сопротивлениями (R12 – R17). Они, собственно, и определяют поддиапазоны прибора в режиме вольтметра. При уменьшении ООС (переключателем S2 включаются резисторы R6 – R8) Кус. возрастает, соответственно повышается чувствительность операционного усилителя, что позволяет его использовать в режиме милливольтметра.

Особенностью предлагаемой разработки является возможность работы прибора в двух режимах – вольтметра постоянного тока с границами от 0,1 до 1000 в, и милливольтметра с верхними границами поддиапазонов 12,5, 25, 50 мВ. При этом в двух режимах используется один и тот же делитель (Х1, Х100), так что, к примеру, на поддиапазоне 25 мВ (0,025 в) с применением множителя Х100 можно измерять напряжение 2,5 в. Для переключения поддиапазонов прибора применен один многопозиционный двухплатный переключатель.

С применением выносного ВЧ-пробника на германиевом диоде ГД507А можно измерять ВЧ-напряжение в тех же поддиапазонах с частотой до 30 мГц.

Диоды VD1, VD2 защищают стрелочный измерительный прибор от перегрузкок при работе. Еще одной особенностью защиты микроамперметра при переходных процессах, возникающих при включении-выключении прибора, когда стрелка прибора зашкаливает и может даже погнуться, является применение релейного отключения микроамперметра и замыкание выхода ОУ на нагрузочный резистор (реле Р1, С7 и R11). При этом (при включении прибора) на зарядку С7 требуются доли секунды, поэтому реле срабатывает с задержкой и микроамперметр подключается к выходу ОУ на доли секунды позже. При выключении прибора С7 разряжается через лампу-индикатор очень быстро, реле обесточивается и разрывает цепь подключения микроамперметра раньше, чем полностью обесточатся цепи питания ОУ. Защита собственно ОУ осуществляется включением по входу R9 и С1. Конденсаторы С2, С3 являются блокировочными и предотвращают возбуждение ОУ. Балансировка прибора («установка 0») осуществляется переменным резистором R10 на поддиапазоне 0,1 в (можно и на более чувствительных поддиапазонах, но при включенном выносном пробнике возрастает влияние рук). Конденсаторы желательны типа К73-хх, но при их отсутствии можно взять и керамические 47 - 68н. В выносном щупе-пробнике применен конденсатор КСО на рабочее напряжение не менее 1000в.

Настройка милливольтметра-вольтметра проводится в такой последовательности. Сначала настраивают делитель напряжения. Режим работы – вольтметр. Подстроечный резистор R16 (поддиапазон 10в) устанавливают на максимальное сопротивление. На сопротивлении R9, контролируя образцовым цифровым вольтметром, устанавливают напряжение от стабилизированного источника питания 10 в (положении S1 - Х1, S3 – 10в). Затем в положении S1 - Х100 подстроечными резисторами R1 и R4 по образцовому вольтметру устанавливают 0,1в. При этом в положении S3 - 0,1в стрелка микроамперметра должна установиться на последнюю отметку шкалы прибора. Соотношение 100/1 (напряжение на резисторе R9 – Х1 - 10в к Х100 - 0,1в, когда положение стрелки настраиваемого прибора на последнем делении шкалы на поддиапазоне S3 – 0,1в) проверяют и корректируют несколько раз. При этом обязательное условие: при переключении S1 образцовое напряжение 10в менять нельзя.

Далее. В режиме измерения постоянного напряжения в положении переключателя делителя S1 - Х1 и переключателя поддиапазонов S3 - 10в переменным резистором R16 устанавливают стрелку микроамперметра на последнее деление. Результатом (при 10 в на входе) должны быть одинаковые показания прибора на поддиапазоне 0,1в - Х100 и поддиапазоне 10в - Х1.

Методика настройки вольтметра на поддиапазонах 0,3в, 1в, 3в и 10в прежняя. При этом положения движков резисторов R1, R4 в делителе менять нельзя.

Режим работы – милливольтметр. На входе 5 в. В положении S3 - 50 мВ делитель S1 - Х100 резистором R8 устанавливают стрелку на последнее деление шкалы. Проверяем показания вольтметра: на поддиапазоне 10в Х1 или 0,1в Х100 стрелкка должна быть на середине шкалы – 5в.

Методика настройки на поддиапазонах 12,5мВ, и 25мВ такая же, как и для поддиапазона 50мВ. На вход подается соответственно 1,25в и 2,5в при Х 100. Проверка показаний проводится в режиме вольтметра Х100 - 0,1в, Х1 - 3в, Х1 - 10в. Следует учесть, что когда стрелка микроамперметра находится в левом секторе шкалы прибора, погрешность при измерениях увеличивается.

Особенность такой методики калибровки прибора: не требуется наличие образцового источника питания 12 – 100 мВ и вольтметра с нижним пределом измерения меньше 0,1 в.

При калибровке прибора в режиме измерения ВЧ напряжений выносным пробником на поддиапазоны 12,5, 25, 50 мВ (при необходимости) можно построить корректирующие графики или таблицы.

Прибор собран навесным монтажом в металлическом корпусе. Его размеры зависят от размеров применяемой измерительной головки и трансформатора блока питания. У меня, например, работает двухполярный БП, собранный на трансформаторе от импортного магнитофона (первичная обмотка на 110в), Стабилизатор лучше всего собрать на МС 7812 и 7912 (или LM317), но можно и проще – параметрический, на двух стабилитронах. Конструкция выносного ВЧ пробника и особенности работы с ним подробно описана в (2, 3).

Используемая литература:

  1. Б.Степанов. Измерение малых ВЧ напряжений. Ж. «Радио», № 7, 12 – 1980, с.55, с.28.
  2. Б.Степанов. Высокочастотный милливольтметр. Ж. «Радио», № 8 – 1984, с.57.
  3. Б.Степанов. ВЧ головка к цифровому вольтметру. Ж. «Радио», № 8, 2006,с.58.
  4. М.Дорофеев. Вольтомметр на ОУ. Ж. «Радио», № 12, 1983, с.30.

Василий Кононенко (RA0CCN).

Эта статья посвящена двум вольтметрам, реализованных на микроконтроллере PIC16F676. Один вольтметр имеет диапазон измеряемых напряжений от 0,001 до 1,023 вольта, другой, с соответствующим резистивным делителем 1:10, может измерять напряжения от 0,01 до 10,02 вольта. Ток потребления всего устройства при выходном напряжении стабилизатора +5 вольт составляет примерно 13,7 мА. Схема вольтметра изображена на рисунке 1.

Два вольтметра схема

Цифровой вольтметр, работа схемы

Для реализации двух вольтметров использованы два вывода микроконтроллера, сконфигурированных на вход для модуля цифрового преобразования. Вход RA2 используется для измерения малых напряжений, в районе вольта, а к входу RA0 подключен делитель напряжения 1:10, состоящий из резисторов R1 и R2, позволяющий измерять напряжение до 10 вольт. В данном микроконтроллере используется десятиразрядный модуль АЦП и чтобы реализовать измерение напряжения с точностью до 0,001 вольта для диапазона 1 В, пришлось применить внешнее опорное напряжение от ИОН микросхемы DA1 К157ХП2. Так как мощность ИОН микросхемы очень маленькая, и чтобы исключить влияние внешних цепей на этот ИОН, в схему введен буферный ОУ на микросхеме DA2.1 LM358N . Это неинвертирующий повторитель напряжения, имеющий стопроцентную отрицательную обратную связь — ООС. Выход этого ОУ нагружен на нагрузку, состоящую из резисторов R4 и R5. С движка подстроечного резистора R4, опорное напряжение величиной 1,024 В подается на вывод 12 микроконтроллера DD1, сконфигурированного, как вход опорного напряжения для работы модуля АЦП . При таком напряжении каждый разряд оцифрованного сигнала будет равен 0,001 В. Чтобы уменьшить влияние шумов, при измерении малых величин напряжения применен еще один повторитель напряжения, реализованный на втором ОУ микросхемы DA2. ООС этого усилителя резко уменьшает шумовую составляющую измеряемой величины напряжения. Так же уменьшается напряжение импульсных помех измеряемого напряжения.

Для вывода информации об измеряемых величинах применен двухстрочный ЖКИ, хотя для этой конструкции хватило бы и одной строки. Но иметь в запасе возможность вывода еще какой ни будь информации, тоже не плохо. Яркость подсветки индикатора регулируется резистором R6, контрастность выводимых символов зависит от величины резисторов делителя напряжения R7 и R8. Питается устройство от стабилизатора напряжения собранного на микросхеме DA1. Выходное напряжение +5 В устанавливается резистором R3. Для уменьшения общего тока потребления, напряжение питания самого контроллера можно уменьшить до величины, при которой сохранялась бы работоспособность контроллера индикатора. При проверке данной схемы индикатор устойчиво работал при напряжении питания микроконтроллера 3,3 вольта.

Настройка вольтметра

Для настрой данного вольтметра необходим, как минимум цифровой мультиметр, способный измерять напряжение 1,023 вольта, для настройки опорного напряжения ИОН. И так, с помощью контрольного вольтметра выставляем на выводе 12 микросхемы DD1 напряжение величиной 1,024 вольта. Затем на вход ОУ DA2.2, вывод 5 подаем напряжение известной величины, например 1,000 вольт. Если показания контрольного и настраиваемого вольтметров не совпадают, то подстроечным резистором R4, изменяя величину опорного напряжения, добиваются равнозначных показаний. Затем на вход U2 подают контрольное напряжение известной величины, например 10,00 вольт и подборкой величины сопротивления резистора R1, можно и R2, а можно и тем и другим добиваются равнозначных показаний обоих вольтметров. На этом регулировка заканчивается.

Я радиолюбитель

Милливольтметр постоянного и переменного токов и омметр с линейной шкалой

Принципиальная схема милливольтметра постоянного и переменного токов и омметра с линейной шкалой приведена на рис. 49. Основным элементом милливольтметра является усилитель переменного тока. Он состоит из истокового повторителя на полевом транзисторе Т17, эмиттерного повторителя на транзисторе Т18 и трехкаскадного усилителя, собранного по схеме с общим эмиттером, на транзисторах Т18-Т20. На выходе усилителя включен выпрямитель и стрелочный индикатор.

Для предохранения стрелочного индикатора от возможных перегрузок, возникающих при неправильном выборе предела измерения, параллельно ему включен кремниевый диод Д25. Для обеспечения стабильности коэффициента усиления усилитель охвачен глубокой отрицательной обратной связью. Эта же обратная связь позволяет и существенно улучшить линейность шкалы стрелочного индикатора, особенно в ее начале.

Измеряемое напряжение, поданное на вход милливольтметра, поступает через контакты реле Р1 - преобразователь постоянного напряжения в переменное и резистор R93, определяющий входное сопротивление милливольтметра, на кнопочный переключатель пределов измерения и далее на вход истокового повторителя. Установка верхних пределов измеряемых напряжений производится с помощью подстроечных резисторов R86, R88, R90, R92 и R95. Первоначальный коэффициент усиления усилителя переменного тока для измерения переменных напряжений устанавливается с помощью подстроечного резистора R104, включенного в цепь отрицательной обратной связи.

При измерении переменного напряжения кнопка переключателя В4 с фиксацией должна находиться в ненажатом положении. Для измерения постоянных напряжений или сопротивлений резисторов кнопку нажимают. В этом случае на обмотку реле-преобразователя через диод Д20 подается переменное напряжение 27 В с обмотки силового трансформатора. Одновременно в цепь отрицательной обратной связи включается другой подстроечный резистор R106, с помощью которого увеличивается коэффициент усиления усилителя переменного тока. Происходит это благодаря тому, что эффективное значение пульсирующего напряжения на выходе преобразователя отличается от эффективного значения синусоидального напряжения.

Принцип измерения сопротивлений основан на измерении падения напряжения постоянного тока на соответствующем резисторе. Для этой цели в состав прибора введен стабилизатор тока на транзисторе Т21. В зависимости от предела измерения с помощью кнопочного переключателя В2 (см. рис. 47) устанавливается рабочий ток 1; 0,1 мА или 10 мкА. При этом на пределах измерения 0-30, 0-300 и 0-3000 Ом используется рабочий ток 1 мА, на пределе 0-30 кОм - 0,1 мА, а на пределе 0-300 кОм - 10 мкА. Соответственно на первом пределе максимальное падение напряжения составляет 30 мВ, втором - 0,3 В и на остальных - 3 В. Для измерения сопротивлений необходимо установить требуемый предел измерения, нажать кнопку переключателя В4 с фиксацией, подключить к входным клеммам измеряемый резистор и нажать кнопку В5, тогда вход милливольтметра Гн5 подключится к измеряемому резистору.

Падение напряжения на измеряемом резисторе преобразуется в пульсирующее с помощью преобразователя постоянного напряжения в переменное и измеряется милливольтметром переменного тока. В связи с тем что через измеряемый резистор протекает постоянный ток строго фиксированной величины, падение напряжения на нем оказывается прямо пропорциональным его сопротивлению. Поэтому шкала омметра получается линейной и можно использовать шкалу стрелочного микроамперметра.

В состав блока питания (рис. 48) входит однополупериодный выпрямитель собранный на диоде Д17. Напряжение стабилизируется параметрическим стабилизатором на диодах Д18, Д19. На транзисторе Т16 выполнен буферный повторитель, позволяющий исключить влияние схемы на параметры стабилизатора.

В конструкции вместо рекомендованных транзисторов типа МП416 можно использовать транзисторы широкого применения, такие как МП402-МП403, МП422- МП423, ГТ308-ГТ309 и т. д. Вместо транзистора КТЗ15 - транзисторы типов КТ301, КТ312, с коэффициентами передачи тока В не менее 50. Вместо полевого транзистора КП103 можно применить транзисторы типа КП102 с любой буквой, изменив полярность питающего напряжения. Все транзисторы, за исключением транзистора типа КТ315, на котором собран стабилизатор тока, могут иметь коэффициенты передачи тока В не менее 20.

В качестве кнопочных переключателей наиболее удобно применить переключатель типа П2-К с шагом 10 мм или в крайнем случае с шагом 15 мм. Все переменные резисторы - типа СП-0,5, а подстроечные резисторы - типа СПЗ-46. Электролитические конденсаторы- типа К50-6 на напряжение 15 и 25 В. Остальные конденсаторы - типа К10-7В и МБМ. Все постоянные резисторы - типа МЛТ.

Силовой трансформатор собран на железе Ш-26, набор сердечника 50 мм. Первичная обмотка, рассчитанная на напряжение 220 В, содержит 1000 витков провода ПЭВ-1 диаметром 0,27 мм, вторичная 26 витков провода ПЭВ-1 диаметром 0,64 мм.

В качестве стрелочного микроамперметра применен прибор типа М4206 с током полного отклонения 300 мкА и сопротивлением рамки 240 Ом, шкала прибора имеет 30 делений. Вместо него можно применить микроамперметры любого типа с током полного отклонения 50- 500 мкА и сопротивлением рамки не более 2000 Ом.

При использовании микроамперметра со шкалой, имеющей другое число делений, можно либо заново изготовить шкалу с 30 делениями, либо изменить пределы измерения напряжений и сопротивлений резисторов, изменив величины резисторов во входном делителе. Например, применив микроамперметр с 50 делениями шкалы, целесообразно сделать следующие пределы измерений: 0-0,05; 0-0,5; 0-5; 0-50 и 0-500 В, а омметра 0-50; 0-500 Ом, 0-5, 0-50 и 0-500 кОм.

Для налаживания милливольтметра отключают левый по схеме конденсатор С57 (см. рис. 49) от входного аттенюатора и со звукового генератора подают на него напряжение 7,5 мВ частотой 1-5 кГц. Подстроечным резистором R106 добиваются отклонения стрелки прибора на последнее деление шкалы. Восстановив цепь, подают на вход милливольтметра со звукового генератора напряжение 30 мВ, включают предел измерения 0- 30 мВ и с помощью подстроечного резистора R95 устанавливают стрелку на последнее деление шкалы. Затем увеличивают выходное напряжение звукового генератора и, переключая поддиапазоны входного аттенюатора, с помощью подстроенных резисторов R92, R90, R88 и R86 устанавливают верхние пределы поддиапазонов измерения напряжения переменного тока.

Для калибровки прибора в режиме измерения постоянного напряжения на его вход подают напряжение, соответствующее верхнему пределу того или иного поддиапазона, и с помощью подстроечного резистора R104 устанавливают стрелку прибора на последнее деление шкалы.

Налаживание омметра сводится к подбору необходимых значений тока стабилизатора. Для этого параллельно входным гнездам (Гн5, Гн6) прибора подключают эталонный миллиамперметр постоянного тока с пределами измерения 1; 0,1; 0,01 мА, устанавливают режим измерения сопротивлений или напряжений постоянного тока и нажимают кнопку Кн1 (“измерение”). С помощью одного из подстроечных резисторов R115, R117, R118 в соответствии с выбранным поддиапазоном устанавливают токи стабилизатора 1; 0,1 и 0,01 мА.

Если отсутствует эталонный миллиамперметр постоянного тока, калибровку омметра можно произвести следующим образом. Берут резисторы с сопротивлениями, равными верхним пределам омметра (3, 30 и 300 кОм) с допуском не хуже 0,5-1%, и, последовательно подключая их ко входу прибора, устанавливают соответствующие пределы измерений. Затем нажимают кнопку Кн1 и с помощью указанных ранее подстроечных резисторов добиваются отклонения стрелки прибора на последнее деление шкалы.

Милливольтметр можно изготовить в виде отдельного самостоятельного прибора или ввести в состав звукового генератора. Для этого необходимо изготовить отдельный источник питания с напряжением около 15-24 В. Если применить более чувствительный микроамперметр, например, с током полного отклонения 50 - 150 мкА и вместо указанного стабилитрона Д21 - типа КС133 или КС139, то напряжение источника питания можно снизить до 9 В.

Милливольтметры с линейной шкалой, описанные в литературе, традиционно выполняют по схеме с диодным выпрямителем, включенным в цепь отрицательной обратной связи усилителя переменного тока. Такие устройства довольно сложны, требуют применения дефицитных деталей, кроме того, к ним предъявляются достаточно жесткие конструктивные требования.

В то же время существуют весьма простые милливольтметры с нелинейной шкалой, где выпрямитель собран в выносном щупе, а в основной части используется простой усилитель постоянного тока (УПТ). По такому принципу построен прибор, описание которого предлагалось в журнале «Радио», 1984, № 8, с. 57. Эти приборы широкополосны, обладают высоким входным сопротивлением и малой входной емкостью, конструктивно просты. Но показания прибора условны, а истинное значение напряжения находят либо по градуировочным таблицам, либо по графикам. При использовании узла, предлагаемого автором, шкала такого милливольтметра становится линейной.

Рис.1

На рис. 1 изображена упрощенная схема прибора. Измеряемое высокочастотное напряжение выпрямляется диодом VD1 в выносном щупе и через резистор R1 поступает на вход УПТ А1. Из-за наличия в цепи отрицательной обратной связи диода VD2 усиление УПТ при малых напряжениях на входе увеличивается. Благодаря этому уменьшение выпрямленного диодом VD1 напряжения компенсируется и шкала прибора линеаризируется.

Рис.2

Милливольтметр, изготовленный автором, позволяет измерять напряжение в интервале 2,5 мВ... 25 В на 11 поддиапазонах. Полоса рабочих частот 100 Гц...75 МГц. Погрешность измерения не превышает 5 %.
Принципиальная схема прибора приведена на рис.2. Линеаризирующий каскад, выполненный на операционном усилителе DA1, работает на поддиапазонах «О...12,5 мВ», «0...25 мВ», «0...50 мВ» «0...125 мВ», «0...250 мВ», «О...500 мВ», «0...1,25 В». На остальных поддиапазонах амплитудная характеристика диода VD1 близка к линейной, поэтому вход оконечного каскада (на микросхеме DA2) подключен к выходу щупа через резистивный делитель напряжения (R7--R11). Кондснсаторы С4—С6 предотвращают самовозбуждение операционного усилителя DA2 и уменьшают возможные наводки на его вход.
В приборе использован миллиамперметр с током полного отклонения 1 мА. Подстроенные резисторы R14, R16—R23 — СП5-2. Резистор R7 составлен из двух сопротивлением 300 кОм, соединенных последовательно, R10 и R11 — из двух сопротивлением по 20 кОм. Диоды VD1, VD2 — германиевые высокочастотные.
О перациоиные усилители КР544УД1А можно заменить на любые другие с большим входным сопротивлением.
Особых требований к конструкции прибора не предъявляется. Конденсаторы Cl, С2, диод VDI и резистор RI монтируют в выносной головке, которую соединяют с прибором экранированным проводом. Ось переменного резистора R12 выведена на лицевую панель.
Налаживание начинают с установки стрелки измерительного прибора на нулевую отметку. Для этого переключатель SA1 переводят в положение «25 В», вход прибора соединяют с корпусом, а необходимую корректировку производят резистором R14. После этого переходят на диапазон «250 мВ», регулировкой резистора R12 устанавливают стрелку измерительного прибора на нулевую отметку и подбором резистора R2 добиваются наилучшей линейности шкалы. Затем проверяют линейность шкалы на остальных диапазонах. Если достичь линейности не удается, следует заменить один из диодов на другой экземпляр. Затем подстроечными резисторами R16—R23 калибруют прибор на всех диапазонах.

Примечание. Обращаем внимание читателей, что согласно справочным данным максимальные постоянные и импульсное обратные напряжения для примененного автором статьи в выносном щупе (диод ГД507А) равны 20 В. Поэтому далеко не каждый экземпляр этого типа диодов сможет обеспечить работу прибора на двух последних поддиапазонах.

А. Пугач г. Ташкент

Радио, №7, 1992г.