Ассоциативная часть головного мозга. Три основных функциональных блока мозга (лурия а.р.)

Ре тику ло -ств о л овый уровень интеграции

Ретикулярная формация - это филогенети ч ески старая система мозга , которая не представляет собо й единого анатомического целого и морфологически является гетерогенным обра з ованием. Трудно определить и анатомическую протяженность ретикулярной формации, которая занимает центральное положение на всем протяжении ствола (рис. 68).

Нейрональной основой интегрирующей функции ретикулярной формации служат длинноотросча ты е клетки , аксоны которых могут распространять влияние как в каудальном, так и в ростральном направлении. Ретикулярные клетки соединяют разные отделы внутри ретикулярной формации, а последнюю со спинным мозгом, большими полушариями и мозжечком.

Каждая сенсорная система направляет пути в ретикулярную формацию. Описаны мощные влияния соматических и висцеральных нервов, что позволило считать одной из функций рети-

кулярной формации вис це ро-соматичес-ку ю интеграцию. Показаны пути в ретикулярную формацию от ядер тройничного нерва, вестибулярных ядер, верхней оливы.

Кора мозга оказывает регулирующие влияния на деятельность ретикулярной формации. Пути из ретикулярной формации в нисходящем направлении - к спинному мозгу, мозжечку, ядрам специфических систем и в восходящем - к структурам больших полушарий вплоть до коры также построены по топическому принципу, что свидетельствует о функциональной специализации ретикулярных ядер.

Для активности ретикулярных нейронов характерна аутогенная ритмика, которая служит для осуществления тонических влияний на спинной мозг и большие полушария головного мозга. Сами ретикулярные нейроны способны отвечать на раздражения практически всех афферентных путей или центральных мозговых структур. Такая обширная конвергенция влияний у разных ретикулярных единиц значительно варьирует и зависит от функционального состояния мозга. Если ретикулярный нейрон дифференцирует входные влияния по их модальностям, то полисинап-

тические цепи нейронов с короткими аксонами, по которым активность распространяется внутри самой ретикулярной формации, лишают первоначальный сигнал его модальной специфичности. Поэтому к ядрам таламуса поступает активация, являющаяся продуктом полимодального интегрирования на ретикулярных нейронах.

Дифференцированный характер конвергенции, топическое фракционирование и гетерогенность в организации афферентных и эфферентных связей позволяют заключить, что функции, приписываемые ретикулярной формации, касаются главным образом интеграции и регуляции разных видов деятельности.

П. К. Анохин (1968) обращал внимание на гетерохимичсскую чувствительность отдельных синапсов и целых полинейрональных цепей, активируемых раздражениями различного биологического качества (боль, голод и др.)-

Ретикулярные влияния по соответствующим путлм могут достигать различных релейных ядер сенсорных систем и дифференцированно модулировать афферентные потоки. Показано, например, что концентрация внимания животного на зрительном объекте приводит к блокированию передачи сенсорных импульсов в слуховой системе (П. Эр-нандец-Пеон, 1962). Явления, именуемые привыканием, связывают с регулирующей функцией ретикулярной формации. Поскольку привыкание рассматривают как простейший вид обучения, то ретикулярной формации приписывают известную роль в формировании условных рефлексов (А. Гасто, И. Иошчи и др.).

Интегрированные на ретикулярном уровне размодальные афферентные посылки с учетом мотивационных факторов формируют импульсные тонические влияния к специфическим сенсорным системам, приводящие к модуляции проведения по ним соответствующих сигнализаций. В результате создаются предпосылки для успешного синтеза различных сенсорных сигнализаций на более высоких уровнях мозга.

Другая сторона восходящих ретикулярных влияний может заключаться в создании на таламокортикальном уровне такого функционального состояния {или центрального тонуса мозга), который обеспечит адекватные условия для формирования разномодального афферентного синтеза.

Т а ла мок орт ика льн ы й уровень интеграции.

Нейрофизиология ассоциативных систем мозга. Наряду со специфическими и неспецифическими системами принято выделять в качестве самостоятельной категории ассоциативные таламокортикал ь н ы е системы. Применительно к высшим млекопитающим это сво е образные структуры , не принадлежащие какой-либо одной сенсорной системе, но полу ч ающие информацию от нескольких сенсорных систем. Ассоциативные ядра таламуса относятся к «внутренним ядрам», афферентные входы к которым идут не от сенсорных лемнисковых путей, а от их релейных образований. В свою очередь, эти ядра проецируются на ограниченные корковые территории, которые именуются ассоциати в ными полями.

Согласно анатомическим данным выделяют две высшие ассоциативные системы мозга. Первая включает заднюю группу ассоциативных ядер, проецирующихся на теменную область коры, и именуется т аламопарие т альной системой. Вторая на таламическом уровне состоит из медиодорзального ядра с его проекцией на лобную область коры и называется таламофронтальной системой. Обе ассоциативные системы - продукт прогрессивной дифференциации неспецифического таламуса и достигают значительных размеров у приматов и человека.

Таламопариетальная система. Теменная кора является местом широкой гетеросенсорной конвергенции по волокнам от специфических, ассоциативных и неспецифических ядер таламуса, а также по путям от сенсорных корковых зон и симметричной коры противоположного полушария.

Рис. 69. Типы взаимодействия разномодальных сигналов на нейронах теменной коры мозга кошек

на А и Б: слева - постстимульные. гистограммы {по оси абсцисс длительность латентного периода, мс; по оси ординат -- число потенциалов действия); справа - импульсная активность нейронов; В суммарная (снизу) и импульсная (сверху) активность, сверху вниз на А: ответ на звук, свет и звук 4~ t -" Bt -" r - на £ и В - ответ на соматическое раздражение; свет и свет + соматическое раздражение {два разных опыта). Калибровка: 250 мкВ, 100 мс. На схеме: ССИ -- средняя супрасильвиева извилина, точка - место расположения микроэлектродных треков

Световые воздействия оказывают наиболее сильный эффект на теменную кору: здесь описаны наряду с мульти-сенсорными и собственно зрительные нейроны , которые отвечают на перемещения в определенном направлении сложных геометрических фигур. Иногда эти же клетки отвечают и на звуковые воздействия, и на движения глаз.

Ф Обнаружено три типа межсенсорного взаимодействия на нейронах теменной коры: I - суммирующий нейрон , который при одновременном гете-росенсорном раздражении отвечает более сильным разрядом с более коротким латентным периодом, чем на мономодальные стимулы; II тормозящийся нейрон , латентный период ответа которого увеличивается, когда стимул из моносенсорного превращается в ге-теросенсорный и III - детектор комплекса, который отвечает импульсным разрядом только при комплексном ге-теросенсорном воздействии и не реагирует на изолированное применение мономодальных стимулов (рис. 69). Показано при этом, что в теменной коре существуют полисенсорные клетки, отражающие докорковый, таламический уровень интеграции, наряду с такими

нейронами, на мембране которых реализуются собственно кортикальные механизмы межсенсорного синтеза.

Теменная ассоциативная кора посылает мощные нисходящие связи ко многим сенсорным, лимбическим, ретикулярным и двигательным аппаратам мозга и даже образует волокна в составе кортикоспинального тракта (О. С. Адрианов, 1976).

Все вышесказанное дает основание рассматривать теменные области коры как важнейший дискриминационно - интегративн ы й аппарат больших полушарий.

Ф После удаления теменных полей коры возникают глубокие нарушения в условно-рефлекторной деятельности как на простые мономодальные, так в особенности на разномодальные комплексные сигналы. Это связано со специальной ролью теменной коры в управлении процессами селективного внимания, с оптимазацией режима текущей деятельности, а также с формированием ориентационных движений к опознаваемому сигналу.

В целом таламопариетальная ассоциативная система мозга представляет собой: 1) центральный аппарат

первичного симультанного анализа и синтеза обстановочной афферентации и запуска механизмов ориентационных движений, 2) один из центральных аппаратов «схема тела» и сенсорного контроля текущей двигательной активности и 3) важнейший элемент долоб-ной предпусковой интеграции, участвующий в формировании целостных полимодальных образов.

Таламофронтальная система. Сен-сомоторная кора получаст множественные проекции из специфических, ассоциативных и неспецифических отделов таламуса, ассоциативные кортико-кор-тикальные и транскаллозальные входы из противоположного полушария и характеризуется наличием сложных си-наптических комплексов для конвергенции на одном и том же нейроне множества афферентных влияний. Не только вставочные нейроны, но и выходные элементы сенсомоторной коры - нейроны пирамидного тракта - относятся к категории мультисенсорных клеток.

ф Установлено три типа ответных реакций мультисенсорных нейронов сенсомоторной коры: 1) привыкание, заключающееся в снижении вероятности ответа на каждый последующий стимул в серии; 2) сенсит из ация - усиление реакции при повторных применениях стимула и 3) экстраполяци я- формирование упреждающего ответа нейрона на каждый последующий стимул в серии.

Такие пластические перестройки ответной активности нейронов в зависимости от характера стимуляции и функционального состояния, интенсивности и модального состава стимулов свидетельствуют о наличии сложных механизмов функциональной конвергенции, имеющих непосредственное отношение к формированию системных реакций целостного организма.

Этого нельзя сказать по отношению к собственно лобным полям на дор-золатеральной поверхности прореаль-ной извилины кошек, которые по нейрофизиологическим и морфологическим данным еще не имеют непосредственной увязки с интегративными

процессами мозга, а скорее относятся к структурам неспецифического типа. В то же время мсдиобазальные отделы лобной коры формируют нисходящие пути к таламическим ядрам лимби-ческой системы. Последствия удаления прореальной извилины у кошек состоят в дефиците зрительного опознания (Л, В. Черенкова, 1975) или в нарушениях точности зрительно контролируемых двигательных актов (Ю. А. Юна-тов, 1981). Последнее связывают с тем, что основное пространство собственно лобной коры кошек занимает глазодвигательное поле 8. Нарушений в других сенсорных системах или эмоцио-нально-мотивационной сферы не отмечалось.

0 Таким образом, можно выделить следующие основные механизмы работы ассоциативных систем мозга (А. С. Ба-туев, 1979, 1981, 1984).

1. Механизм. м ультисе н сорной конвергенции. Его специфичность определяется тем, что к ассоциативным полям коры конвергируют афферентные посылки, несущие информацию о биологической значимости того или иного сигнала. Такие отселектированные афферентные влияния вступают в интеграцию на кортикальном уровне для формирования программы целенаправленного поведенческого акта.

2. Механизм пласти ч еских перестроек при гетеро м одальн ы х сенсорных воздействиях. Динамический характер мультисенсорной конвергенции может проявляться либо в избирательном привыкании, либо в сенситизации, либо наконец, в формировании экстраполя-ционного типа ответов. Установлен факт важной роли доминирующей мотивации в определении спектра конвергирующих модальностей и в организации внутрикорковых интеграции. Для теменной коры преобладающим может быть горизонтальный (ламинарный) тип межнейронной интеграции, а для сенсомоторной ассоциативной коры преобладающим является вертикальный (модульный) тип межнейронной интеграции.

3. Механизм краткосрочного хранения следов интеграции, заключающийся

в длительной внутрикорковой или тала-мокорковой реверберации импульсных потоков (см. гл. 6). Последнее объясняет дефекты памяти и обучения у кошек и собак после разрушения ассоциативных полей коры или соответствующих ядер таламуса.

Эволюция ассоциативных систем

В параллельных рядах, которыми шло развитие современных млекопитающих, хотя и сохранился общий план конструкции мозга, но таламо-кортикальные его системы претерпели наиболее существенные морфофункцио-нальные перестройки. Высокого развития достигают корковые механизмы деятельности сенсорных систем с ясно выраженной тенденцией возрастания ассоциативных систем мозга со свойствами полисенсорного конвертирования. В динамике морфологических преобразований происходит обособление зон перекрытия корковых проекций, с которыми связывают реализацию наиболее сложных форм высшей нервной деятельности.

В пределах класса млекопитающих можно выделить три основных уровня эволюции ассоциативных систем мозга. При этом необходимо иметь в виду, что степень развития ассоциативных формаций мозга рассматривается как показатель филогенетического статуса вида (Г. И. Поляков, 1964). Причем мозг насекомоядных рассматривается как предшественник с его дальнейшим усложнением в параллельных рядах грызунов, хищных и приматов. Исследования обнаружили нечеткость границ дифференциации внутри новой коры и неопределенность функциональной идентификации ее полей. Это согласуется с отсутствием в та ламу се четких границ между сенсорными ядрами.

Вместе с этим определенная область коры ежей (рис. 70) по морфологическим критериям позволяет допустить присущие ей интегративные свойства даже в пределах столь примитивно организованного неокортекса (Г. П. Демьяненко, 1977). К этой области коры ежей проецируются примитив-

ные ассоциативные ядра таламуса- медиодорзальное и заднелатеральное. В данной области обнаружены как разномодальные моносенсорные, так и полисенсорные нейроны (А. А. Пирогов, 1977). Такие корковые элементы активируются преимущественно по единому каналу, берущему начало в недифференцированной задней группе ядер таламуса. Таким образом в этой тала-мокортикальной системе сочетаются свойства как неспецифических, так и ассоциативных систем млекопитающих (рис. 70).

Было показано (И. В. Малюкова, 1974), что такая форма зрительно-слуховой интеграции, как двигательный условный рефлекс на одновременный комплекс, не может быть выработана у ежей и попытка ее сформирования приводит к невротическим срывам. Однако сложный цепной двигательный условный рефлекс может быть легко образован на мономодальный сигнал и разрушается после удаления ассоциативной области неокортекса. Больше страдают самые тонкие компоненты сенсомоторной интеграции, которыми завершается пишедобывательный двигательный акт.

Следовательно, хотя примитивная ассоциативная система ежей еще не способна к организации сложных актов межсенсорной интеграции, но она уже начинает участвовать в осуществлении процессов сенсомоторного синтеза.

Как уже указывалось, насекомоядные являются прямыми филогенетическими предшественниками грызунов, хищных и приматов.

Исследование конструкции ассоциативных систем мозга у крыс, кроликов, кошек, собак и низших обезьян позволили прийти к следующему заключению.

Первый уровень - грызуны, мозг которых близок к насекомоядным. У грызунов отсутствует четкая дифференциация коры таламуса на специфические и ассоциативные зоны. Известная диффузность представительства сенсорных систем в больших полушариях головного мозга грызунов коррелирует со сравнительно низким уровнем их аналитико-синтетической дея-

Рис. 70. Схема эволюционного созрева н ия интеграти ан ых аппаратов мозга у насекомоядных (а), хищных (б) и приматов (в):

выделены лишь две специфические сенсорные системы - зрительная и соматическая {som и vis); тонкие линии - их проекционные пути; жирные линии и заштрихованные участки-ассоциативные системы, жирные стрелки - кортико-кортикальные связи; пунктирные зоны эфферентных корковых проекций (преимущественно пирамидных); сог кора большого мозга; Thai - зрительный бугор, th. front - таламофронталь-нан; th.-pariet - таламопариетальная ассоциативная система больших полушарий мозга

тельное ти. Слабая выраженность морфологической дифференциации и функциональной специализации полисенсорных структур у грызунов является фактором, определяющим несовершенство интегративной функции мозга.

У белых крыс формирование условного рефлекса на зрительно-слуховой комплекс оказалось также безрезультатным, неоднократные тренировки этой трудной задачи приводили к невротическим срывам. В то же время зрительно-тактильный комплекс выработать удалось, хотя он характеризовался нестабильностью. Примерно аналогичная картина выявилась у кроликов, у которых дифференцирование светового и звукового компонентов от их одновременного предъявления в комплексе не достигало выше 50-60 % уровня. Это отражает низкий уровень аналитико-синтетической деятельности насекомоядных и грызунов.

Второй уровень - хищные, у которых впервые появляются в коре больших полушарий развитые лобные и

теменные ассоциативные поля и соответствующие структуры таламуса. Для хищных характерны существенные структурные и функциональные различия ассоциативных таламокортикаль-ных систем от других мозговых структур. Это наличие сложных нсйронно-синантических компонентов, к которым конвергируют сенсорные потоки, несущие биологически значимую информацию. Причем таламопариетальная система отражает усложнение актов пространственной ориентировки и формирование механизмов, составляющих текущий сенсорный фон для выполнения целенаправленных поведенческих актов. Таламопариетальная система следствие усложнения конструкции и связей зрительной сенсорной системы, она обеспечивает первичной межсенсорный синтез, формирует сложный комплекс обстановочной афферентации и систему «схемы тела».

Таламофронтальная система включается в корковый отдел соматической сенсорной системы с одновременной проекцией на нее лимбических аппара-

тов мозга. Таламофронтальная система участвует в организации предпусковой интеграции и программировании сложных поведенческих актов. Здесь в большей мере отражены процессы мотива-ционно-эмоциональной окраски поведенческих актов благодаря прямым связям этой системы со всем лимби-ческим комплексом. В пределах отряда хищных лобные отделы неокортекса усложняются, увеличиваются их размеры и функциональная роль в организации сложных форм поведения, требующих мобилизации механизмов краткосрочной и долгосрочной памяти.

У хищных (кошки, собаки) выработка условного рефлекса на разномодаль-ный комплекс выполняется за 10-15 опытов. Уровень дифференцирования светового и звукового компонентов от комплекса достигает 70-90 %; но для этого требуется регулярная тренировка. Иными словами, сигнальное значение комплекса поддерживается при условии угашения реакций на отдельные компоненты. Следовательно, у хищных существует более высокий уровень аналити-ко-синтетической деятельности, заключающейся в способности к интеграции разномодальных сигналов в целостный образ.

Другой важной стороной интегра-тивной функции мозга является степень развития процессов памяти и основанное на них свойство прогнозирования предстоящего поведения. В естественных же условиях существования животных любая поведенческая адаптация относительна и имеет вероятностный характер. Поэтому применительно к биологическим условиям обитания животных в вероятностно изменчивой внешней среде имеет место и вероятностное прогнозирование, а значит, адаптивность поведенческих программ определяется степенью их избыточности и подвижности.

Изучалось поведение в стационарных случайных средах. На звуковой сигнал животное должно было направляться к одной из двух кормушек, причем чаще всего к той, где наиболее вероятно получало подкрепление. Степень вероятности подкрепления из каж-

дой кормушки менялась (А. С. Бату-ев, И. В. Малкжова, 1979; А. И. Кара-мян, И. Ь. Малкжова, 1987). Кошки способны к формированию поведения в сторону той кормушки, вероятность пищевого подкрепления из которой наиболее высока. Причем поведение их меняется в соответствии с изменением вероятности подкрепления. Повреждение фронтальных отделов неокор: текса (в основном сенсомоторной коры) сохраняет элементарные условные рефлексы, но разрушает способность к вероятностному прогнозированию.

Процессы межсенсорной интеграции развиты у хищных в достаточной мере, хотя кортикальный уровень ассоциативных систем мозга имеет перекрытие с зонами выхода эфферентных кортикальных трактов. С другой стороны, у хищных достаточно велика роль до-коркового уровня межсенсорной интеграции и кора получает наряду с модально специфичными афферентными залпами уже переработанную неспецифическую импульсацию из ассоциативных ядер. Наконец, каждая из ассоциативных систем у хищных характеризуется доминированием того или иного сенсорного входа, что, естественно, не способствует достижению полной гетеро-сенсорной интеграции.

Третий уровень - приматы, у которых ассоциативные структуры таламуса с их обширной и дифференцированной проекцией в лобные и теменные области коры включаются в состав самостоятельной целостной интегративной системы больших полушарий. Существенной особенностью приматов являются развитые кортикокортикальные связи, с помощью которых ассоциативные поля могут объединяться в целостную иерархически построенную систему. Благода- а ря компактной системе миелинизиро-ванных ассоциативных волокон возрастает роль кортикального уровня взаимодействия специфических сенсорных зон с ассоциативным неокортексом. Ассоциативные поля неокортекса характеризуются тонкой дифференциацией с формированием из нейронных элементов целостных структурно-функциональных ансамблей.

Спецификой ассоциативного неокор-текса является конвергировавшие в нем множества сенсорных сообщений о биологической значимости внешней сигнализации в соответствии с доминирующей мотивацией по независимым друг от друга афферентным каналам. При этом возрастает роль собственно кортикального уровня межсенсорной интеграции и обеспечения процессов краткосрочной памяти. После разрушения либо лобных, либо теменных ассоциативных полей коры не только глубоко страдают процессы межсенсорного синтеза, ориентировочно-исследовательская деятельность, краткосрочная память, но и формирование более простых форм условно-рефлекторной деятельности.

Функциональная значимость отдельных ассоциативных систем расширяется и уточняется в сравнении с хищными. Утрачивается преобладание какого-либо одного сенсорного входа, а следовательно, расширяются возможности их интеграции. Возникает топографическая разнесенность ассоциативных полей от собственно афферентных корковых формаций, что снижает удельное значение сенсомоторной интеграции и расширяет роль коры в осуществлении межсенсорного афферентного синтеза. Возникает все большая их взаимозависимость для обеспечения деятельности целостной интегративной системы полушарий.

Для приматов (низшие обезьяны) выработка условных рефлексов на одновременный комплекс представляет собой относительно легкую задачу, ибо в процессе применения комплексного раздражителя компоненты самопроизвольно утрачивают сигнальное значение и сформированные условно-рефлекторные связи сохраняются месяцами без дополнительной тренировки."У обезьян можно выработать условный рефлекс даже на трехчленный комплекс из разномодальных сигналов. Это свидетельствует о более высоком уровне аналитико-синтетической деятельности мозга обезьян в сравнении с хищными, что находит отражение и в большей структурной дифференциации и функ-

циональной специализации ассоциативных таламокортикальных систем.

Обезьяны легко справляются с задачами на вероятностное прогнозирование, однако после разрушения в области ассоциативной лобной коры лишаются этой способности, их поведение приобретает однообразный персеверативный характер.

Очевидно, способность использования предыдущего опыта, записанного в долгосрочной памяти для прогнозирования поведения в стационарных случайных средах, претерпевает существенные эволюционные преобразования, которые определяются степенью развития интегративных систем мозга, уровни дифференциации которых коррелируют со степенью совершенства аналитико-синтетической деятельности и организации сложных форм поведения.

Онтогенез ассоциативн ы х систем мозга

Изучение динамики формирования ассоциативных систем мозга показало гетерохрон н ост ь этого процесса, что, по-видимому, обусловлено включением отдельных звеньев таламокортикальных систем в обеспечение разных поведенческих актов, последовательность созревания которых определяется их необходимостью для осуществления жизненно важных функций новорожденного животного (зрело- и незрело-рождающегося) .

Согласно концепции системогенеза (П. К. Анохин, 1968) неравномерность созревания нервных элементов и связей между ними объясняется их вовлечением в структуру различных функциональных систем. Гетерохронность их созревания определяется значимостью для выживания организма особенно в критические периоды жизни (см. гл. 2), когда новорожденное животное вступает в непосредственное соприкосновение с окружающей средой. Анатомически и функционально первыми созревают те сенсорные механизмы (соматические, акустические), которые обеспечивают выживание на начальных этапах индивидуального развития.

В ассоциативных ядрах таламуса обнаружены проекции в кору больших полушарий уже новорожденных котят (В. П. Бабминдра, Л. А. Васильева, 1987). В то же время неспецифические таламические ядра формируют свои проекции на кору несколько позже, их основная роль состоит в контроле внутриталамической активности.

Несмотря на раннее формирование ассоциативных систем, их окончательное созревание происходит в течение довольно длительного периода и заканчивается у кошек между 2-м и 3-м месяцами жизни, Именно к этому времени у котят впервые формируется полноценный условный рефлекс на одновременный комплекс, приближающийся по своим характеристикам к аналогичному условному рефлексу взрослого животного (Л. А. Васильева, Л. В. Черенкова, 1986).

Когда первый критический этап постнатального развития преодолен, наступает период бурной дифференциации мозговых структур и возникновения между ними двусторрнних связей диффузного характера. Формируется та структурно-функциональная матрица, которая послужит основой для дальнейшего развертывания процессов координации и выделения локальных функциональных структур.

Таким образом, принцип развития - от диффузного неспецифического к локальному специфическому (А. И. Карамян, 1976) - общебйоло-гическая закономерность, которой подчиняется и динамика развития ассоциативных систем мозга.

Наконец, третий этап связан с моментом формирования тормозных координационных механизмов как в самой коре, так и в глубоких структурах. Появление таких механизмов обеспечивает тонкую специализацию как сенсорных, так и ассоциативных систем мозга, а значит, и различных целостных поведенческих актов.

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.



Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга.

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и

Рис. 4. Карта цитоархитектонических полей коры головного мозга.

Конвекситальная поверхность коры больших полушарий: а - первичные поля; б - вторичные поля; в - третичные поля

реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр. Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного

обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов. Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский, опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта). В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования

потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствования в отношении выполняемой деятельности и обусловливает адекватный выбор поведения в соответствии с актуализированной потребностью. Только в условиях оптимального бодрствования человек может наилучшим образом принимать и перерабатывать информацию, вызывать в памяти нужные избирательные системы связей, программировать деятельность, осуществлять контроль над ней.

И.П. Павлов неоднократно возвращался к вопросам о решающей роли в реализации полноценной условнорефлекторной деятельности оптимального тонуса мозговой коры, необходимости высокой подвижности: нервных процессов, позволяющих с легкостью переходить от одной деятельности к другой. В условиях оптимальной возбудимости коры нервные процессы характеризуются известной концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и, наконец, высокой подвижностью нервных процессов, которые обусловливают протекание каждой организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга. Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга с ее активирующими и инактивирующими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация. Филогенетически ретикулярная формация мозга представляет наиболее древнее морфологическое образование. Еще в 1855 г. венгерским анатомом Йожефом Ленхошшеком была описана сеть из нервных клеток, находящаяся в середине ствола мозга. Цитоархитектоника этой своеобразной сетчатой структуры изучена еще недостаточно, очевидно, что ретикулярная формация не является аморфным образованием. В ретикулярной формации выделяют более или менее компактные и ограниченные клеточные скопления - ядра, отличающиеся различными морфологическими особенностями. В связи с этим одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации долго оставалось неизвестным. Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга.

В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры, приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Однако только электрофизиологические исследования выявили исключительную роль ретикулярной формации в интегративной деятельности мозга. Это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Волокна ретикулярной формации, направляясь вверх, образуют модулирующие «входы» (как правило, аксодендритные синапсы) в выше расположенных мозговых образованиях, включая старую и новую кору. От старой и новой коры берут начало нисходящие волокна, которые идут в обратном направлении к структурам гипоталамуса, среднего мозга и к более низким уровням мозгового ствола. Через нисходящие системы связей все нижележащие образования оказываются под управлением и контролем тех программ, которые возникают в коре головного мозга и для выполнения которых требуется модуляция активности и модификация состояний бодрствования. Таким образом, блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем. Этот аппарат используется для пластичного приспособления организма к условиям среды. Он содержит в своей основе по крайней мере два источника активации: внутренний и внешний. Первый связан с обменными процессами, обеспечивающими внутреннее равновесие организма, второй - с воздействием внешней среды. Первым источником активации является внутренняя активность самого организма, или потребности. Любые отклонения от жизненно важных «констант» в результате изменения нервных или гуморальных влияний или вследствие избирательного возбуждения различных отделов мозга приводят к выборочному «включению» определенных органов и процессов, совокупная работа которых обеспечивает достижение оптимального состояния для данного вида деятельности организма.

Наиболее простые формы внутренней активности связаны с дыхательными и пищеварительными процессами, процессами внутренней секреции и другими, включенными в гомеостатический механизм саморегуляции, который устраняет нарушение во внутренней среде организма за счет своих резервов. Более сложные формы этого вида активации организованы в структуру врожденного поведения, направленного на удовлетворение определенной потребности. Естественно, для того чтобы обеспечить механизм инстинктивной регуляции поведения, необходима весьма избирательная и специфическая активация. Такая специфическая активация может быть функцией лимбической системы мозга, в которой важная роль принадлежит гипоталамусу.

Гипоталамус - часть межуточного мозга, содержит десятки высоко дифференцированных ядер, обладающих обширной и разносторонней системой связей. Его важной анатомической особенностью является высокая проницаемость сосудов гипоталамуса для крупномолекулярных белковых соединений. Этим обеспечиваются оптимальные условия для обмена веществ в нейронах гипоталамуса и получения информации о гуморальной среде организма. Его разносторонние регулирующие функции реализуются гуморальным путем и через обширные нервные связи с различными областями головного мозга.

Как часть активирующей системы мозга задний гипоталамус обусловливает поведенческую активацию. Это достигается прежде всего через регуляцию вегетативных и эндокринных функций организма. Таким образом, гипоталамус координирует внутренние потребности организма с его внешним поведением, направленным на достижение приспособительного эффекта. Гипоталамус входит в состав потребностно-мотивационной системы, являясь ее главной исполнительной структурой. При этом он не просто участвует в регуляции отдельных жизненно важных функций (голода, жажды, полового влечения, активной и пассивной обороны), а осуществляет их объединение в сложные комплексы или системы.

В зависимости от характера нервной и гуморальной сигнализации, собирающейся в гипоталамусе, в нем или накапливается, или тормозится мотивационное возбуждение, определяющее внешнее поведение (например, пищевое). При сильном пищевом возбуждении преобладает симпатическая активация коры больших полушарий, общее двигательное беспокойство и воспроизведение ранее заученного поведения. Удовлетворение актуализированной потребности сопровождается доминированием деятельности парасимпатической системы - двигательным успокоением и сонливостью. У бесполушарных животных стимуляция потребностных центров гипоталамуса вызывает лишь более общее, генерализованное мотивационное возбуждение, проявляющееся в общем, нецеленаправленном беспокойстве, поскольку более сложные формы поведения - поисковая реакция, выбор объекта и его оценка - регулируются вышележащими структурами, лимбическими образованиями и корой головного мозга.

Второй источник активации связан с воздействием раздражителей внешней среды. Ограничение контакта с внешней средой (сенсорная депривация) приводит к значительному снижению тонуса (возбудимости) коры мозга. В условиях резкого ограничения сенсорной информации у человека могут возникать галлюцинации, которые в какой-то мере компенсируют дефицит сенсорного возбуждения.

Часть непрерывного потока сенсорных сигналов, поставляемых в кору специфическими (анализаторными) системами, по коллатералям поступает в ретикулярную формацию. После многократных переключений в ее синапсах афферентное возбуждение достигает высших отделов головного мозга. Эти так называемые неспецифические активирующие влияния служат необходимым условием для поддержания бодрствования и осуществления любых поведенческих реакций. Помимо этого неспецифическая активация является важным условием для формирования селективных свойств нейронов коры в процессе онтогенетического созревания и обучения.

В аппарате восходящей ретикулярной формации сформировался механизм преобразования сенсорной информации в две формы активации: тоническую (генерализованную) и фазическую (локальную). Тоническая форма активации связана с функцией нижних стволовых отделов ретикулярной формации. Она генерализованно, диффузно поддерживает определенный уровень возбудимости в коре и подкорковых образованиях. Фазическая форма активации связана с верхними отделами ствола мозга, и прежде всего с неспецифической таламической системой, которая локально и избирательно распределяет воздействия восходящей активации на подкорковые образования, старую и новую кору.

Тоническая активация облегчается притоком возбуждений из различных органов чувств. «Экстренное» появление или исчезновение какого-либо раздражителя во внешней среде вызывает ориентировочный рефлекс и реакцию активации (экстренная мобилизация организма). Это поликомпонентная реакция, она связана с работой механизмов тонической и фазической активации ретикулярной формации (среднего мозга и неспецифических ядер таламуса). Кроме того, ориентировочный рефлекс связан с активирующей и тормозной функцией нейронов гиппокампа и хвостатого ядра, которые являются важным аппаратом регуляции тонических состояний коры мозга.

Установлено, что кора головного мозга наряду со специфическим функциональным вкладом оказывает «неспецифические» активирующие и тормозные влияния на нижележащие нервные образования. Корковые влияния, поступающие по нисходящим волокнам, представляют достаточно дифференцированную организацию и могут рассматриваться в качестве дополнительного третьего источника активации . Специфические пучки этих волокон, селективно меняющих возбудимость сенсорных и двигательных аппаратов, исходят из первичных и вторичных зон коры. Из лобных отделов коры (источник произвольной активации) исходят наиболее обширные активирующие и инактивирующие избирательные влияния, проецирующиеся на стволовой отдел мозга. Эти нисходящие волокна, проводящие корковую избирательную импульсацию к различным образованиям ствола, по мнению А.Р. Лурии , являются тем аппаратом, посредством которого высшие отделы коры непосредственно участвуют в формировании замыслов и программ поведения человека; с их помощью нижележащие модулирующие аппараты таламического и стволового отдела тоже вовлекаются в реализацию этих процессов, и таким образом обеспечивается достаточный уровень активности для осуществления сложных форм высшей нервной (психической) деятельности.

Сенсорные системы (анализаторы) мозга.

Сенсорной системой (анализатором, по И. П. Павлову) называют часть НС, состоящую из воспринимающих элементов - сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее.

Сенсорная система выполняет следующие основные функции , или операции, с сигналами : 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов - нейронами коры больших полушарий.

У человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные - возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие . К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Передача и преобразование сигналов . Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.

Ограничение избыточности информации и выделение существенных признаков сигналов . Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах.

Кодирование информации . Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму - код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

H.H. Данилова:

Первый функциональный блок составляют анализаторы, или сенсорные системы. Анализаторы выполняют функцию приема и переработки сигналов внешней и внутренней среды организма. Каждый анализатор настроен на определенную модальность сигнала и обеспечивает описание всей совокупности признаков воспринимаемых раздражителей. Модальная специфичность анализатора в первую очередь определяется особенностями функционирования его периферических образований и специфичностью рецепторных элементов. Однако в значительной степени она связана с особенностями структурной организации центральных отделов анализатора, упорядоченностью межнейронных связей всех морфологических образований от рецепторного уровня до коркового конца (проекционных зон).

Анализатор - это многоуровневая система с иерархическим принципом ее конструкции. Основанием анализатора служит рецепторная поверхность, а вершиной - проекционные зоны коры. Каждый уровень этой морфологически упорядоченно организованной конструкции представляет собой совокупность клеток, аксоны которых идут на следующий уровень (исключение составляет верхний уровень, аксоны которого выходят за пределы данного анализатора). Взаимоотношения между последовательными уровнями анализаторов построены по принципу «дивергенции- конвергенции». Чем выше нейронный уровень анализаторной системы, тем большее число нейронов он включает. На всех уровнях анализатора сохраняется принцип топической проекции рецепторов. Принцип многократной рецептотопической проекции способствует осуществлению множественной и параллельной переработки (анализу и синтезу) рецепторных потенциалов («узоров возбуждений»), возникающих под действием раздражителей.

Уже в функциональной организации клеточного аппарата рецепторного уровня анализаторов выявились существенные черты их приспособления к адекватному отражению действующих раздражителей (специфичность рецепторов по фото-, термо-, хемо- и другим видам «энергии»). Известный закон Фехнера о логарифмическом отношении силы раздражителя и интенсивности ощущения получил объяснение в частотных характеристиках разряда рецепторных элементов. Обнаруженный в 1958 г. Ф. Ратлиффом эффект латерального торможения в глазе мечехвоста объяснил способ контрастирования изображения, улучшающий возможности предметного зрения (детекции формы). Механизм латерального торможения выступил как универсальный способ формирования селективных каналов передачи информации в центральной нервной системе. Он обеспечивает центральным нейронам анализаторов избирательную настройку их рецептивного поля на определенные свойства раздражителя. Нейрон, стоящий на выходе рецептивного поля, может выделять один признак раздражителя (простые детекторы) или комплекс его свойств (сложные детекторы). Детекторные свойства нейрона обусловливаются структурной организацией его рецептивного поля. Нейроны-детекторы более высокого порядка образуются в результате конвергенции нейронов-детекторов низшего (более элементарного) уровня. Нейроны-детекторы сложных свойств формируют детекторы «сверхсложных» комплексов. Высший уровень иерархической организации детекторов достигается в проекционных зонах и ассоциативных областях коры мозга .

Проекционные зоны анализаторных систем занимают наружную (конвекситальную) поверхность новой коры задних отделов мозга. Сюда входят зрительная (затылочная), слуховая (височная) и общечувствительная (теменная) области коры. В корковый отдел этого функционального блока включается также представительство вкусовой, обонятельной, висцеральной чувствительности. При этом наиболее обширные области в коре занимает та сенсорная система, которая имеет наибольшее экологическое значение для данного вида.

Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни - на оттенки цвета, другие - на направление движения, третьи - на характер линий (край, полоса, наклон линии) и т. п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных или модулирующих) систем.

Вторичные проекционные зоны коры располагаются вокруг первичных зон, как бы надстраиваясь над ними. В этих зонах 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток. Для этих нейронов характерно детектирование сложных признаков раздражителей, однако при этом сохраняется модальная специфичность, соответствующая нейронам первичных зон. Поэтому предполагается, что усложнение детекторных селективных свойств нейронов вторичных зон может происходить путем конвергенции на них нейронов первичных зон. В первичной зрительной коре (17-е поле Бродмана) содержатся в основном нейроны-детекторы простых признаков предметного зрения (детекторы ориентации линий, полосы, контраста и т. п.), а во вторичных зонах (18-е и 19-е поля Бродмана) появляются детекторы более сложных элементов контура: края, ограниченной длины линий, углов с различной ориентацией и др. . Первичные (проекционные) зоны слуховой (височной) коры представлены 41-м полем Бродмана (рис. 4), нейроны которого модально специфичны и реагируют на различные свойства звуковых раздражителей. Как и первичное зрительное поле, эти первичные отделы слуховой коры имеют четкую рецептотопию. Над аппаратами первичной слуховой коры надстроены вторичные зоны слуховой коры, расположенные во внешних отделах височной области (22-е и частично 21-е поля Бродмана). Они также состоят преимущественно из мощно развитого 2-го и 3-го слоя клеток, реагирующих избирательно одновременно на несколько частот и интенсивностей: звукового раздражителя.

Наконец, тот же принцип функциональной организации сохраняется и в общечувствительной (теменной) коре. Основой и здесь являются первичные или проекционные зоны (3-, 1- и 2-е поля Бродмана), толща которых также преимущественно состоит из обладающих модальной специфичностью нейронов 4-го слоя, а топография отличается четкой соматотопической проекцией отдельных сегментов тела. Вследствие чего раздражение верхних участков этой зоны вызывает появление кожных ощущений в нижних конечностях, средних участков - в верхних конечностях контрлатеральной стороны, а раздражение пунктов нижнего пояса этой зоны - соответствующие ощущения в контрлатеральных отделах лица, губ и языка. Над первичными зонами располагаются вторичные зоны общечувствительной (теменной) коры (5-е и частично 40-е поле Бродмана), состоящие преимущественно тоже из нейронов 2-го и 3-го слоев, и их раздражение приводит к возникновению более комплексных форм кожной и кинестетической чувствительности (см. рис. 4).

Таким образом, основные, модально-специфические зоны анализаторов мозга построены по единому принципу иерархической структурной и функциональной организации. Первичные и вторичные зоны, согласно И.П. Павлову, составляют центральную часть, или ядро, анализатора в коре, нейроны которого характеризуются избирательной настройкой на определенный набор параметров раздражителя и обеспечивают механизмы тонкого анализа и дифференцировки раздражителей. Взаимодействие первичных и вторичных зон носит сложный, неоднозначный характер и в условиях нормальной деятельности обусловливает согласованное содружество процессов возбуждения и торможения, которое закрепляет макро- и микроструктуру нервной сети, занятой анализом афферентного потока в первичных проекционных сенсорных полях. Это создает основу для динамического межанализаторного взаимодействия, осуществляемого в ассоциативных зонах коры.

Ассоциативные области (третичные зоны) коры являются новым уровнем интеграции: они занимают 2-й и 3-й клеточные (ассоциативные) слои коры, на которых протекает встреча мощных афферентных потоков, как одномодальных, разномодальных, так и неспецифических. Подавляющее большинство ассоциативных нейронов отвечает на обобщенные признаки стимулов - на количество элементов, пространственное положение, отношения между элементами и пр.

Конвергенция разномодальной информации необходима для целостного восприятия, для формирования «сенсорной модели мира», которая возникает в результате сенсорного обучения.

Ассоциативные зоны расположены на границе затылочной, височной и заднетеменной коры. Основную их часть составляют образования нижнетеменной корковой области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого сенсорного блока мозга. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки /избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации - для оперирования значениями слов и использования их для отвлеченного мышления, т.е. для того синтетического характера восприятия, о котором писал в свое время И.М. Сеченов.

Клинические наблюдения различных очаговых поражений третичных зон мозга человека накопили большой материал о взаимосвязи ассоциативных областей с различными функциональными расстройствами. Известно, что поражения лобно-височно-теменной области, так называемых речевых зон (имеется в виду левое полушарие), связаны с возникновением афазии (расстройства речи). При поражении нижневисочной области наблюдают предметную агнозию (нарушение процесса узнавания), теменных областей или угловой извилины теменной доли - развитие оптико-пространетвенной агнозии, при поражении левой височной доли обнаруживается цветовая агнозия и т. д. Следует отметить, что локальные поражения ассоциативных зон коры могут быть связаны как с относительно элементарными сенсорными расстройствами, так и с нарушениями сложных форм восприятия.

У высших животных механизмы, выделяющие элементарные признаки раздражителей, составляют лишь начальное звено в механизме восприятия и дифференцировки стимулов (специфические ядра таламуса и первичные зоны коры). В высших сенсорных (вторичных и ассоциативных) зонах коры выступает закон убывающей специфичности, который является обратной стороной принципа иерархической организации нейронов-детекторов в специфической подкорке и проекционных зонах коры. В нем отражается переход от дробного анализа частных модально-специфических признаков раздражителя к синтезу более общих «схем» воспринимаемого. Закономерным является и то, что, несмотря на убывающую специфичность высших сенсорных полей коры (преобладание мультимодальных и ассоциативных нейронов), они являются в функциональном отношении более совершенными образованиями. Они выполняют функцию интеграции сложных комплексных раздражителей, им свойственна пластичность, они подвержены «неспецифической» активации со стороны модулирующих систем (ретикулярной формации, «центров» актуализированных потребностей и пр.).

Механизмы различения фигур и их пространственной организации у обезьян связывают с ассоциативными зонами (височной и заднетеменной) коры мозга. Известно, что обезьяны легко обучаются различению фигур по форме, размеру и их пространственной ориентации. После экстирпации нижневисочной коры обезьяна испытывает затруднения в различении фигур по их форме, но легко обучается дифференцировать их по размеру и ориентации. В то время как удаление затылочно-теменной зоны коры приводит к нарушению механизма пространственной дифференцировки фигур по отношению к телу, а также нарушению различения положения и перемещения собственного тела по отношению к окружающим предметам. Данные о физиологической роли височной и заднетеменной коры пока малочисленны. Так, для выяснения специфической функции нижневисочной коры и ее нейронной организации были проведены микроэлектродные исследования на обезьянах с использованием сложной стимульной программы: квадрат и круг сопровождались двигательным обучением, а крест и треугольник использовались в качестве незначащих стимулов. В результате исследований выделены три группы клеток: одни нейроны реагировали избирательно только на одну из четырех использовавшихся фигур, другие нейроны отвечали на две фигуры, третьи - на все четыре (без дифференцировки значимости стимула). Из экспериментов следовало, что эти нейроны выделяют сложные признаки зрительного изображения независимо от моторного обучения, при этом одни из них реагируют на появление соответствующего ему сенсорного стимула, другие отвечают лишь тогда, когда стимул сопровождается актом внимания. Нейроны пластичны, их специфическая реакция на сенсорный «образ» не связана с двигательным обучением и может меняться лишь в результате сенсорного обучения. Следует отметить, что свойства этих нейронов хорошо согласуются с поведенческими и клиническими данными о роли нижневисочной коры в процессах формирования сложных образов . Следуя высказанной в 1949 г. гипотезе Д. Хебба, можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д. Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль. Позднее Ю. Конорский , опираясь на ставшие классическими данные Д. Хьюбела и Т. Визеля о корковых нейронах с «простыми», «сложными» и «сверхсложными» рецептивными полями и детектирующими все более сложные признаки зрительного стимула, выдвинул концепцию о «гностических нейронах». Он предположил, что унитарному восприятию (т. е. узнаванию знакомого лица с первого взгляда, знакомого голоса, знакомого запаха, характерного жеста и др.) соответствуют не ансамбли совозбужденных нейронов, а единичные нейроны - «гностические нейроны», интегрирующие возбуждение при действии сложных комплексных раздражителей. Гностические нейроны составляют главную деятельную основу высших уровней анализаторов, вследствие чего высшие уровни анализаторов представляют, по мнению Ю. Конорского, «гностические зоны». Гностическую зону можно рассматривать как своеобразную картотеку гностических нейронов, в которой представлены все унитарные «подобразы», сформировавшиеся у данного индивидуума в процессе сенсорного обучения.

Для концепции гностических нейронов первое время не было экспериментальных доказательств. Основой для предположений Ю. Конорского служили главным образом клинические данные. Однако вскоре стали появляться работы, из которых следовало, что « гностические нейроны », избирательно реагирующие на сложные комплексы раздражителей, существуют. В лобных долях мозга кошки были обнаружены клетки, которые избирательно реагируют на появление в поле зрения сложного зрительного стимула. У говорящих птиц существуют нейроны, избирательные к гласным звукам человеческой речи. Наконец, с 1980-х годов стали появляться серии работ по исследованию височных отделов коры мозга обезьян. В верхневисочной извилине были обнаружены нейроны, выделяющие определенные черты лица. По гностическим свойствам нейроны верхневисочной извилины отличались друг от друга. Одни нейроны отвечали только при фиксации внимания на интересующем обезьяну объекте, другие - при свободном блуждании взора, если стимул попадал на сетчатку. Одни нейроны давали максимальную реакцию на изображения лица человека в фас, другие - в профиль, третьи - на часть лица (верхнюю или нижнюю). При этом большинство нейронов реагирует на трехмерное изображение лица, а не на двумерное. Одни нейроны реагируют на лицо конкретного индивида, другие - на любое лицо независимо от индивидуальных черт. Большая часть Нейронов верхневисочной извилины оказалась специфичной к живому конкретному лицу (человека или обезьяны). Формирование механизма избирательности в височной коре обезьяны происходит под влиянием индивидуального опыта, поскольку отмечается зависимость селективных свойств нейронов от круга лиц (животных и экспериментаторов), с которыми обезьяна была в общении до экспериментов. Данные нейронных исследований на обезьянах по восприятию изображений лица согласуются с результатами наблюдения больных с прозопагнозией (нарушением узнавания лиц), которые также свидетельствуют о наличии в области височных отделов коры мозга специального механизма по распознаванию лиц .

Известно, что система нейронов, детектирующих сложные сенсорные стимулы (гностические единицы), формируется на базе врожденной (генетически детерминированной) системы корковых нейронов с «жесткими» связями и большим резервом «лабильных», пластичных связей. В определенный критический (сенситивный) период онтогенетического развития и созревания межнейронных связей важным является функциональное задействование этих потенциальных связей. Их актуализация осуществляется под воздействием внешней стимуляции (индивидуального сенсорного опыта) . В процесс приобретения индивидуального опыта дополнительный вклад вносит модулирующая система, оказывающая «неспецифическое» активирующее воздействие на соответствующий анализатор. Активирующее воздействие достигается через ориентировочно-исследовательский рефлекс или внимание. Этот процесс активации, по мнению Ю. Конорского, является необходимой предпосылкой для преобразования потенциальных корковых связей в действующие, т.е. делает возможным формирование гностических нейронов, гностических зон и познавательной системы.

Модулирующие системы мозга

Блок модулирующих систем мозга регулирует тонус коры и подкорковых образований, оптимизирует уровень бодрствованияи обусловливает адекватный выбор поведения в соответствии с потребностью.

В условиях оптимальной возбудимости коры нервные процессы характеризуются концентрированностью, уравновешенностью возбуждения и торможения, способностью к дифференцировке и высокой подвижностью нервных процессов, которые обусловливают протекание организованной целенаправленности деятельности.

Аппаратом, выполняющим роль регулятора уровня бодрствования, осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции является модулирующая система мозга .Ее часто называют лимбико-ретикулярный комплекс или восходящая активирующая система.

К нервным образованиям этого аппарата относятся лимбическая и неспецифическая система мозга сее:

- активирующими структурами (ретикулярную формацию среднего мозга, задний гипоталамус, синее пятно в нижних отделах ствола мозга);

- инактивирующими структурами (преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору) .

Важнейшей частью модулирующего блока мозга является активирующая ретикулярная формация - сеть из нервных клеток, находящаяся в середине ствола мозга. Одни авторы рассматривают ретикулярную формацию как диффузное вытянутое в длину единое образование, другие считают ее комплексом, состоящим из многих дифференцированных ядер с различной структурой и функциями. Латерально (с боков) ретикулярная формация окружена сенсорными путями. Таким образом, волокна ретикулярной формации окружены слоем сенсорных путей, которые к ней образуют множество коллатералей.

Функциональное назначение ретикулярной формации . Первым указанием на нисходящие тормозные влияния ретикулярной формации явились опыты И.М. Сеченова, в которых наблюдалось угнетение рефлекторных реакций лягушки при раздражении межуточного мозга. В.М. Бехтерев обнаружил восходящие влияния ретикулярной формации на двигательную область коры , приводящие к возникновению судорожных припадков при раздражении определенных участков Варолиева моста. Исключительная роль ретикулярной формации в интегративной деятельности мозга, это открытие было сделано в 1949 г. Г. Мэгуном и Г. Моруцци. Путем стимуляции через электроды, вживленные в стволовой отдел мозга (на уровне среднего мозга), им удалось получить реакцию пробуждения спящего животного. Эту стволовую систему мозга Г. Мэгун назвал восходящей активирующей системой мозга.

Блок активации с его восходящими и нисходящими влияниями работает (по принципу обратной связи) как единый саморегулирующий аппарат, который обеспечивает изменение тонуса коры, и вместе с тем сам находится под его контролем . Этот аппарат используется для пластичного приспособления организма к условиям среды.

37. Ассоциативный центр мозга рептилий

Рассмотрев общий план строения нервной системы, следует отдельно остановиться на новых принципах организации и работы мозга, впервые реализованных у рептилий. Нервная система архаичных амниот стала
логическим развитием строения удачной амфибийной конструкции.
Однако мозг амфибий практически выполнял функцию сложного рефлекторного аппарата, а его интеллектуальные возможности остались невостребованными. Эволюция амфибий решалась мышцами, зубами, линейными размерами и масштабами размножения.

Шло элементарное освоение пищевых ресурсов, где для развития сложного поведения не было ни места, ни биологической необходимости.
Со следами этого периода эволюции позвоночных мы сталкиваемся, пытаясь выработать условные рефлексы у различных представителей современных амфибий. Крайне низкая обучаемость и отсутствие
долговременной памяти для накопления индивидуального опыта показывают, что сложных поведенческих задач перед древними амфибиями никогда в их эволюции не стояло.
Особенности развития органов чувств и признаки сложного поведения рептилий базируются на особенностях структурной организации головного мозга.

Мозг рептилий отличается от мозга амфибий как в количественном, так и в качественном отношении. До появления амниот стратегии поведения или реакция на конкретный раздражитель выбирались по принципу доминантности (см. рис. III-6, е). Этот принцип состоит в том, что выраженного крупного ассоциативного центра мозга у многих первичноводных позвоночных или амфибий нет (см. рис. III-6, e). Выбор
формы поведения происходит на основании сравнения активностей примерно равноценных отделов мозга, обслуживающих различные органы чувств. Решающее значение играет уровень возбуждения мозговых
аналитических центров одного из анализаторов. Представительство органа чувств, достигшее в мозге наибольшего возбуждения, и становится основной областью для принятия решения. После выбора одной из
инстинктивных реакций происходит её поведенческая реализация. Этот процесс осуществляется под контролем того же простого сравнения доминантностей. Если в процессе осуществления реакции возникает новое раздражение, которое изменяет соотношение возбуждений органов чувств,
то поведенческая реализация инстинктивного процесса останавливается.
Каждая конкретная ситуация отличается от предыдущей, но задействуется тот же набор органов чувств. Если наибольшее возбуждение достигается в той же сенсорной системе, то поведение сохраняется, а если в другой, то
изменяется. Поскольку абсолютно идентичные условия в естественной жизни практически не встречаются, поведение даже самых примитивных анамний будет бесконечно разнообразно. Следовательно, поведение
каждой особи будет индивидуальным с довольно высокой динамической адаптивностью.

Первые признаки ассоциативного центра появились ещё в мозге амфибий. У них таким центром мог стать средний или промежуточный мозг. Для этого были все основания. В промежуточном мозге находятся
нейроэндокринные центры, контролирующие половое поведение, миграции и энергетический баланс организма анамний. Через активизацию центров промежуточного мозга запускаются инстинктивные программы поведения, которые контролируют работу других отделов мозга. Казалось бы, промежуточный мозг мог стать аналитическим центром поведения анамний, а затем и амниот. Однако в этом случае система реализации поведенческих реакций состояла бы не только в работе нервной системы.
Каждый раз любое поведенческое событие приводило бы к стимуляции работы нейроэндокринных центров.

Гормональная регуляция поведения реализуется долго, а неврологическая - быстро. При быстрой смене форм
поведения наступал бы конфликт между инертными гормональными и динамичными нейральными программами поведения. У насекомых этот конфликт был решён в пользу нейрогормональных центров и чисто
инстинктивного поведения.
С первичноводными позвоночными и амфибиями сложилась довольно нестабильная ситуация. С одной стороны, роль гормонально- инстинктивной регуляции поведения у амфибий очень велика и явно
доминирует при выборе стратегий поведения. С другой стороны, нейроморфологический субстрат развит вполне достаточно для небольшой индивидуализации поведения при реализации этих стратегий. Возникла
оригинальная система гормонально-доминантного выбора форм поведения из стандартного инстинктивного набора. У амфибий стратегия поведения определяется нейрогормональным состоянием особи. При реализации
выбранной формы поведения она адаптируется к конкретным условиям при помощи сравнения доминантностей, которое было описано выше. В такой схеме контроля поведения анамний не остаётся места для ассоциативного центра. Он мог бы понадобиться только тогда, когда возникла бы потребность в быстрой адаптивной индивидуализации поведения. Такая ситуация может сложиться только в том случае, когда
последовательная реализация инстинктивных форм поведения будет прямо зависеть от постоянно меняющейся ситуации.
В таких нестабильных условиях окружающей среды оказались архаичные рептилии. По-видимому, требования к быстрой индивидуализации поведения и памяти возросли, а реализация гормонально доминантного принципа выбора из стандартного инстинктивного набора форм поведения стала неэффективной. Возник
совершенно новый тип принятия решений, который сохранился в мозге современных рептилий, принадлежащих к отдалённым систематическим группам. Их всех объединяет одно принципиально новое качество мозга - выраженный ассоциативный центр (см. рис III-7).
Основной ассоциативный центр рептилий сформировался в крыше среднего мозга (см. рис. III-5, в; III-6; III-7, б). Он возник на базе нескольких органов чувств, которые имели представительство в этом отделе головного мозга. Основную часть крыши среднего мозга занимает представительство зрительной системы. Зрительные нервы после прохождения хиазмы перекрещиваются и поднимаются к крыше среднего мозга. Аксоны ганглиозных клеток сетчатки оканчиваются на нейронах крыши среднего мозга, которые организованы в стратифицированные структуры (см. рис. III-5, в; III-7, б).

Существует чёткая топографическая
связь между определённым участком сетчатки и зоной крыши среднего мозга. При этом соблюдаются форма изображения и взаимное расположение его элементов. Довольно долго переднюю часть крыши
среднего мозга считали исключительно мозговым центром зрительного анализатора. Однако функционально-морфологические исследования показали, что это далеко не так.
Наряду с представительством зрительной системы в крышу среднего мозга приходят информация о соматической (кожной) чувствительности, двигательном анализаторе, вестибулярные и слуховые сигналы (см. рис. III-6, д).

Слуховой анализатор у рептилий значительно увеличивает своё представительство в этом центре. В результате у многих рептилий в задней части крыши среднего мозга появляются малозаметные парные
выпячивания - задние или нижние бугорки. Крыша среднего мозга становится не однородным анатомическим образованием, как у анамний, ачетверохолмием. В ней сосредоточивается представительство практически
всех основных дистантных и контактных анализаторов. Даже обонятельная система имеет своё представительство в крыше среднего мозга. За исключением обонятельной системы, практически все сенсорные проекции в крышу среднего мозга рептилий носят топологический характер. Это
означает, что информация от каждого конкретного участка тела представлена в строго определённом участке крыши среднего мозга.
Сохраняется принцип карты тела, которая точечно переносится в мозг.
Таким образом, в крыше среднего мозга рептилий сосредоточена разнообразная информация о состоянии собственного организма и окружающего мира, которая объединена по топологическому принципу.
Рассмотрим, что происходит в крыше среднего мозга, если передняя правая конечность рептилии просто стоит на необычной поверхности. При оценке такой ситуации в крыше среднего мозга осуществляется сравнительный анализ соматической, сенсомоторной, слуховой и зрительной информации.
Это легко сделать, поскольку все сигналы концентрируются в одном центре, а зачастую и друг над другом, как в слоистом пироге. Средний мозг проводит комплексный анализ многих факторов одного явления, что
позволяет выбрать наиболее адекватную реакцию. Для этого идеально подходит стратифицированная структура крыши среднего мозга.
Предельно упрощая реальную ситуацию, можно сказать, что в крыше среднего мозга представительство различных сенсорных систем расположено на условных «этажах», организованных в горизонтальной плоскости. Каждый этаж занимает своеобразная карта. Она может быть сиюминутной информационной картой рецепторных сигналов от поверхности тела, изображением на сетчатке или акустическим полем. Все
эти карты ориентированы на своих «этажах» так, что отражают примерно одно и тоже направление в пространстве.

Слуховой сигнал от переднейправой конечности лежит под её зрительной картой и над соматическим
сигналом от кожи стопы. Специализированные «этажи» соотнесены между собой при помощи вертикальных связей, которые позволяют быстро оценить конкретную ситуацию и принять адекватное решение. Эта схема
работы крыши среднего мозга позволяет понять рефлекторное быстродействие мозга рептилий. По-видимому, именно это быстродействие стало основной причиной эволюционного успеха
архаичных рептилий.
Появление у рептилий совершенного рефлекторного центра принятия решений привело к нескольким важным последствиям. С одной стороны, возможность быстрого выбора решений бессмысленна, если общий
уровень метаболизма будет оставаться на прежнем уровне. Следовательно, развитие среднего мозга сопровождалось повышением обмена. С другой стороны, увеличение размеров крыши среднего мозга создало
необходимый клеточный субстрат для развития памяти. Индивидуальный опыт животного стал базой для сравнения событий, разнесённых во времени. Переоценить это событие трудно. Впервые возникли реальные
основы для индивидуализации поведения, построенной на сравнении различных событий. Надо отметить, что эти нейробиологические преимущества мозга рептилий обычно даже не рассматриваются при
реконструировании ранней эволюции амниот (Carroll, 1982).

Архаичные рептилии вслед за развитием центра рефлексологического анализа получили материальный субстрат для запоминания различных событии. Им стало доступно воспроизведение индивидуального опыта, что служит основой обучения. С самообучаемыми архаичными рептилиями амфибии уже не могли конкурировать. Гормонально-инстинктивные принципы поведения амфибий, рыб и беспозвоночных сделали их кормом для рептилий с развитым рефлекторно-ассоциативным средним мозгом.
Все перечисленные преимущества строения головного мозга рептилий не могли возникнуть сами собой. Для столь глубокой качественной перестройки мозга должны были сложиться крайне жесткие и
неординарные условия. Архаичные рептилии должны были оказаться в своеобразной среде с очень высокими требованиями к аналитическим свойствам мозга и индивидуальной памяти.